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The goal of this paper is to understand differences between children’s and adults’ motions in order to improve future 
motion recognition algorithms for children. Motion-based applications are becoming increasingly popular among 
children (e.g., games). These applications often rely on accurate recognition of users’ motions to create meaningful 
interactive experiences. Motion recognition systems are usually trained on adults’ motions. However, prior work has 
shown that children move differently from adults. Therefore, these systems will likely perform poorly on children’s 
motions, negatively impacting their interactive experiences. Although prior work has established that there are 
perceivable differences between child and adult motion, these differences are yet to be quantified. If we can quantify 
these differences, then we can gain new insights about how children perform motions (i.e., their motion qualities). We 
present 24 articulation features (11 of which we newly developed) that describe motions quantitatively; we then evaluate 
them on a subset of child and adult motions from the publicly available Kinder-Gator dataset to reveal differences; 
motions in this dataset are represented as postures, each of which is defined by 3D positions of 20 joints tracked by a 
Kinect at a specific time instance. Our results showed that children perform motions that are quantifiably faster, more 
intense, less smooth, and less coordinated as compared to adults. Based on our results, we propose guidelines for improving 
motion recognition algorithms and designing motion applications for children.  
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1 Introduction 
There has been a recent surge in technologies and applications that use natural interaction modalities, such as motion 
and speech [10,17,25]. Specifically, within the context of motions, the prevalence of low-cost tracking sensors that can 
accurately track users’ movements, such as the Microsoft Kinect v1 and v2 [19], and most recently, the Azure Kinect 
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DK [20], has increased the popularity of applications that support motion interactions. For example, these sensors have 
enabled the development of exertion games that translate physical movements into game commands [17,32] and 
assistive robots that rely on motions to facilitate human-robot collaboration [18]. Motion-based applications are also 
becoming increasingly popular among children as researchers and practitioners have started using these applications 
to target children’s needs. For example, exergames such as iFitQuest [17] and Vortex Mountain [32] were explicitly 
designed to increase the time children spend engaged in physical activity. Researchers in the field of child-robot 
interaction have also designed robots that can facilitate social interaction with children (e.g., companion robots [18]). 

To support motion interactions, motion-based applications usually include intelligent algorithms that can 
accurately recognize when the user performs the specific sets of motions that the application supports. Nijhar et al. 
[21] found that the precision of motion recognition algorithms is positively associated with higher levels of immersion 
in exergames, indicating that accurate recognition of motion sets play an important role in facilitating meaningful 
interactive experiences. Motion recognition algorithms are usually trained on adults’ motions. However, there is 
enough evidence to establish that children move differently from adults. Prior work has found that naïve viewers can 
perceive the difference between child and adult motions at levels significantly above chance, even when the motion is 
abstracted from all appearance cues (e.g., height and build) [15]. Prior work has also found that children exhibit higher 
variance in the body parts they move when performing the same motions compared to adults [4]. Hence, motion 
recognition systems trained on adults’ motions will likely perform poorly on children’s motions, negatively impacting 
their interactive experiences. Although prior work has established that there are perceivable differences between child 
and adult motion, these differences are yet to be quantified. If we can quantify these differences, then we can gain new 
insights about how children perform motions (i.e., their motion qualities). Hence, the goal of this paper is to 
understand differences between children’s and adults’ motions in order to improve future motion recognition 
algorithms for children. 

To achieve this goal, we defined a set of 24 articulation features (11 of which we newly developed) that describe 
motions quantitatively. An articulation feature is any measure that quantifies a specific property associated with how 
a user performs a motion (e.g., length, shape) [5,24,27]. We used 13 features from prior work [26]that describe motions 
globally based on the overall posture of the body (i.e., the position of the body at a specific time instance defined by a 
set of joints with positions in 3D; Figure 1) (global-level features). We also defined a set of 11 new features that 
characterize properties of a joint moving in 3D space (joint-level). We analyzed both these global-level and joint-level 
features on a subset of motions from the publicly available Kinder-Gator dataset [2] to reveal differences; motions in 
this dataset are represented as postures, each of which is defined by 3D positions of 20 joints at a specific time instance 
(Figure 1).  

Supporting prior work [4], we found that children are more inconsistent in how they perform motions as compared 
to adults. Furthermore, we found that children’s natural motions differ from adults’ motions along four dimensions: 
speed, intensity, smoothness, and coordination. Children perform motions that are quantifiably faster, more intense, less 
smooth, and less coordinated. We also found that the type of the motion also plays a role in the variations children 
show when performing motions. Based on our results, we propose guidelines for improving motion recognition 
algorithms and designing motion sets for children. 

The contributions of this paper are: a) proposing joint-level features for quantifying motions; b) establishing 
features that differentiate child motion from adult motion; c) characterizing children’s natural motion qualities; and d) 
presenting guidelines for improving motion recognition algorithms and designing motion applications for children. 
We hope that designers and researchers can use these guidelines to improve children’s interactive experiences in 
motion-based applications.  

2 Related Work 

2.1 Understanding Children’s Motion Performance 
The ability to make movements relies on motor development, which is the study of the progression in a person’s 
ability to perform motions [22]. Motor development is usually age-related [9] and, although well-developed in adults,  
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Figure 1. Kinect skeleton showing the 20 joints tracked. The skeleton also depicts a posture of a motion. 

prior work in child development has outlined the ways in which children are still in the process of developing their 
motor skills [9,13]. For example, Hill et al. [13] noted that gross motor skills (e.g., arm movements) and postural 
control, which are important for the performance of complex movements [30], are still developing in children. 
Therefore, children will likely perform motions differently from adults. In the context of motion recognition, such 
differences will mean that motion recognition systems trained on adults’ motions will perform poorly on children’s 
motions, emphasizing a need to understand these differences to improve recognition performance. However, there is 
limited work that has sought to characterize the differences between children’s and adults’ motions. Aloba et al. [3] 
quantified the differences between children’s and adults’ walking and running motions using features based on gait 
literature and found that children move faster and with higher speed as compared to adults. In another study, Aloba et 
al. [4] found that children are less consistent in how they perform motions as compared to adults when comparing 
agreement in which joints are used to perform similar motions. However, a general understanding of how children’s 
motions differ from adults’ motions in terms of motion features that can inform motion recognition systems is still 
lacking. Prior work in stroke gesture research has established that features that quantitatively describe properties of 
the geometric paths of stroke gestures can reveal new insights about the differences between children’s and adults’ 
stroke gestures. Shaw et al. [24] analyzed children’s and adults’ stroke gestures using both simple features that 
characterize stroke gesture path properties (e.g., length) [5] and relative accuracy features that characterize deviations 
of a stroke gesture path from a representative articulation of the gesture (e.g., shape deviation) [27] and found 
significant differences only for the relative features, indicating that children are more likely than adults to exhibit 
variations in how they perform stroke gestures. Since stroke gestures and motions are similar in that they both involve 
lines, curves, and corners moving in space over time [4], our work focuses on identifying features that quantitatively 
describe properties of motion paths, irrespective of their motion type to reveal new insights about the differences 
between children’s and adults’ motion performance.  

2.2 Improving Motion Recognition Accuracy 
Prior work has noted that differences in how users perform motions can negatively impact recognition performance 
[4]. There has been extensive work in motion recognition research focused on defining features to promote accurate 
recognition of motions [7,33]. For example, Weinland et al. created Fourier features, which are view-invariant features 
represented in Fourier space extracted from motion history volumes [33] while Ali and Shah defined kinematic 
features, based on optical flow [1]. However, these features are usually designed for algorithmic interpretation and 
difficult for designers to reason about intuitively, so Vatavu [26] termed them machine-readable features. In contrast, 
features that are tailored for human understanding (i.e., human-readable) would be more informative in understanding 
how users actually perform motions [26]. Only Vatavu has proposed human-readable features that characterize users’ 
motion performance [26]. The author proposed distance-based, time-based, and appearance-based (i.e., based on the 
composition of postures) features for characterizing motions globally, based on the overall postures that make up the 
motions. However, the extent to which these features can be used to understand how users actually perform motions 
is not yet known. Furthermore, these features focus on the overall posture, so only capture absolute characteristics of 
the motions as a whole. Prior work in stroke gesture research has noted that such features that capture only absolute 
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characteristics do not have enough descriptive powers as they do not capture details about the gesture path. Hence, in 
our work, to identify a set of features that are human-readable and can quantitatively describe both the motions as a 
whole as well as properties of the motion path, we rely on Vatavu’s global-level features and also define a new set of 
joint-level features that quantify properties of a motion path. The new features were inspired by features from stroke 
gesture research for quantifying stroke gesture paths [3] and movement analysis frameworks, such as Laban 
Movement Analysis [1]. By analyzing these features on children’s and adults’ motions, we aim to propose design 
guidelines that can be used to improve the performance of motion recognition algorithms for children’s motions.  

3 Articulation Features 
To understand how children’s motions differ from adults’ motions, we defined a set of 24 articulation features (11 of 
which we newly developed) that describe motions quantitatively. An articulation feature is any measure that 
quantifies a specific property associated with how a user performs a motion (e.g., length, shape) [24,27] . Our features 
comprise a set of 13 global-level features proposed by Vatavu [26] and a newly proposed set of 11 joint-level 
features, which we developed inspired by stroke gesture research [27]. Vatavu’s features describe motions globally, 
based on the overall posture of the body while our joint-level features describe properties of the paths of individual 
joints, as tracked by the motion sensor (Figure 2).  

Vatavu [26] identified three categories of global features for characterizing motion performance: spatial features, 
kinematic features, and appearance features. Spatial features (7 features) capture properties related to area, volume, 
and amplitude of gesture movement performed by the whole body or individual body parts [26]. Examples include the 
volume of the 3D space in which the motion is performed (gesture volume) and the total amount of movement 
(quantity of movement). Kinematic features (2) capture properties related to time and speed [26]. These features 
include the time it takes to perform the motion (performance time) and the speed of the motion (average gesture speed). 
Appearance features (4) capture how motions decompose into simple units of movements [26]. Examples include the 
average deviation of a body posture from the centroid posture of the motion (body posture variation) and the maximum 
difference between the body postures that make up the motion (body posture diffusion). Table 1 shows the thirteen 
global-level features considered in this work. 

3.1 Joint-Level Features 
A limitation of global-level features is that they focus on the position of the whole body at a given point in time, so 
these features will not capture motion qualities that relate to subtleties of the joint articulation path, defined by a set of 
consecutive 3D points the joint moves through along the time-domain. These subtleties can inform an understanding 
of the variations in how users move their joints during motion. For example, global-level features will be useful in 
recognizing whether a user performed a Jump motion as opposed to a Forward Lunge motion. But they may not be as 
helpful in understanding whether two users lifted their feet differently when performing the Jump motion. Therefore, 
we propose a set of joint-level features that quantify geometric properties (e.g., shape, curvature) of the joint 
articulation paths necessary to perform motions. To identify the joints necessary to perform a given motion, we use 
the filterJoint method proposed by Aloba et al. [4], which uses standard deviation and K-means clustering [12] 
iteratively to select the set of joints that are actively moving during a motion.  

To compute the joint-level features, we use the template gesture task axis method from 2D touchscreen stroke 
gesture research [27]. Vatavu et al. defined a gesture task axis as a representative way to articulate a stroke gesture 
[27]. To compute a 2D stroke gesture task axis, stroke gesture paths are first resampled to the same number of points 
to enable point-to-point comparison and translated so that the centroid is at the origin [27]. The template task axis is a 
“canonical template form supplied to a recognizer to which articulated gestures will be compared in a template-based 
matching approach” [27]. Given a dataset of stroke gestures (e.g., for the letter A), the template task axis is the gesture 
with the least distance to a representative gesture, computed as the average of all the gestures in the dataset [27].  

Similarly, we define a joint task axis as a representative way to move a joint. Unlike stroke gestures in which 
there is only one articulation path, defined by the finger’s movement, and one task axis, motions have multiple 
articulation paths, defined by all the joints tracked by the motion sensor. Therefore, a motion will have multiple joint  
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Figure 2. (left) Gesture volume computed on postures of a Raise your hand motion. (right) Shape error (sum 
of d’s) computed by comparing two articulation paths of the wrist joint of a Raise your hand motion (blue 

path = joint task axis) 

task axes, one for each joint necessary to perform the motion. To apply the template method, we use a leave-one-out 
approach inspired by the Leave-One-Out-Cross-Validation approach (LOOCV) used in recognition experiments [4,35]. 
In LOOCV, motions from one participant are selected for testing (i.e., the candidate user) while motions from all other 
participants are used for training. This process is repeated until all participants have been selected once for testing. 
Similarly, given a set of motions (e.g., for the motion Raise your hand), one user is selected as the candidate user. For 
each of their joints that is actively moving, the template joint task axis for that joint will include the corresponding 
joint articulation path of every other user in the set. For example, given three users (c1, c2, c3) wherein c1 is the 
candidate user who actively moves their right hand when raising their hand, then the task axis for the right hand joint 
will include the articulation paths of the right hand joint for users c2 and c3. The process is repeated until every user 
in the set has been selected as the candidate user once.  

Next, we define a set of joint-level features that characterize the deviations of the articulation path of a joint from 
the joint task axis with respect to properties of the joint articulation path, such as length, shape, curvature, and time 
(Table 1). Because our end goal is to improve recognition of children’s motions and recognition accuracy for pattern 
matching algorithms is fundamentally driven by consistency among users, we focus on features that can quantify such 
consistency in motion performance. These features were inspired by the relative accuracy features from Vatavu et al. 
[27], features for tracking mouse paths [14], and features from Laban Movement Analysis [16]. We defined 11 joint-
level features, such as Shape error, which measures the average absolute deviation of the shape of a joint articulation 
path and the corresponding joint task axis, and Shape variability, which measures the uniformity of the shape errors. 
Most of these features rely on a concept of “error”, which does not imply that the user moved the joint in the wrong 
way, but rather measures inconsistency with respect to the task axis [27]. Each feature requires a comparison between 
the joint path of the candidate user and every other users’ corresponding joint path (i.e., the articulation paths in the 
joint task axis). Then, the average of the feature computation across all the comparisons and all the joints that the 
candidate user is actively moving is used to compute the feature for a given candidate user’s motion instance. For 
example, given three users (c1, c2, c3) where c1 is the candidate user who actively raises their right hand and right 
elbow when raising their hand. To compute the shape error, we compare the shape of c1’s right hand path to the shape 
of c2’s right hand path and the shape of c1’s right hand path to the shape of c3’s right hand path and get the average 
(u1). We do the same for the right elbow joint to get the average (u2). Then, we take the average of u1 and u2 as the 
Shape error. Our set of eleven joint-level features is shown in Table 1.  

3.2 Feature Computation 
We computed the features on a set of motions we selected from the Kinder-Gator dataset [2], a publicly-available 
dataset of 10 children (ages 5 to 9) and 10 adults performing motions, forward-facing the Kinect v1. The Kinect v1 
tracks the motions of 20 joints along three dimensions: x (horizontal), y (vertical), and z (depth). Although Kinder-
Gator motions were collected in a lab setting, the experiment was set up similarly to typical Kinect-based games in 
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that children stood forward-facing the Kinect and performed the motions as they would naturally in their day-to-day 
activities [2]. Specifically, we computed the features on the same subset of 14 motions used in prior work by Aloba et 
al. [4], selected to avoid overly similar motions (Table 2). Because we are comparing child and adult motion, we 
account for height differences: we use participant height as a normalization factor for the global-level features, 
estimated as the absolute difference between a user’s head and foot in the y-dimension of the first frame when 
performing the Raise hand motion. This movement guarantees that the participant is standing in the first frame. For 
the joint-level features, first, we smoothed the joint articulation path using an exponential moving average filter to 
remove tracking noise, similar to prior work [4]. We then resampled the path to n = 32 points, so that different motion 
paths are directly comparable even at different movement speeds while maintaining the original duration of the 
motion. Then, we translated the centroid of each joint path to the origin, such that the distance between the positions 
denotes differences in the shape of the paths. Finally, we scaled the paths uniformly by the same scaling factor across 
all dimensions to normalize the paths with respect to the height/limb length of the participant, thus accounting for 
height differences. Gesture recognition research has used this scaling method uses this scaling method to ensure that 
different articulation paths are comparable irrespective of size [4,28]. 

To ensure accurate comparison of a joint articulation path and the joint task axis, we apply the following methods 
to address the four ways in which motions can be performed that will impact the distance between two joint 
articulation paths: a) Same joint (i.e., left vs right) and same direction, compare as-is. (b) Same joint but different 
directions (e.g., swiping right to left vs. swiping left to right), FLIP the joint articulation path 1800 along the x-axis to 
change direction and then compare joint articulation path and joint task axis. (c) Different joints but same direction, 
REPLACE articulation path of the joint task axis with the articulation path of the joint of its opposite limb (i.e., replace 
left joints with right joints and vice-versa, leave middle joints as-is) then compare. (d) Different limbs and different 
directions, FLIP the joint articulation path, REPLACE articulation path of joint task axis, then compare. For a given 
candidate joint articulation path and an articulation path in the set of articulation paths in the corresponding joint task 
axis, the comparison with the least Euclidean distance is used to compute all the joint-level features for this pair of 
joint paths.  

3.3 Analysis 
To quantify the differences between how children and adults perform motions, we analyzed the computed feature 
values statistically using ANOVA. Because none of our data satisfied the requirements for normality, we used a non-
parametric version of the ANOVA test, known as the Aligned Rank Transform (ART) [34]. For each of the features, we 
ran a two-way repeated measures ANOVA with a between-subjects factor of age group (child, adult) and a within-
subjects factor of motion type (14 motions: Table 2). Since we want to understand how child motion differs from adult 
motion, we are only interested in the main effect of age group and the interaction effect between age group and 
motion type (different motion types will be guaranteed to exhibit different feature values). All post-hoc analysis was 
done using the Tukey method.  

3.4 Results 
For the global-level features, we found a significant difference in 6 of the 13 features, indicating that children’s 
motions in the Kinder-Gator dataset differed from adults’ motions with respect to the specific property being 
measured by each of these six features (starred in Table 1). For the joint-level features, we found significant differences 
in all but 2 of the 11 features (starred in Table 1). Since the joint-level features compare articulation paths, this finding 
indicates that children move more inconsistently than adults for each of the specific properties being measured. In the 
following results, we only present the features (GL for global-level features and JL for joint-level features) that showed 
a significant difference between children’s and adults’ motions. We include computation formulae for our new JL 
features below; GL features from prior work can be found in Vatavu et al. [2] and formulae for all features are 
provided in our paper’s supplemental materials. 
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3.4.1 Gesture Volume (GV) and Gesture Area (GA) [GL]. 
GV measures the volume of the 3D space where the motion is performed and is computed as the product of the 
difference between the maximum and minimum positions of the body in the x, y, and z dimensions. GA measures the 
area of the 2D space in front of the motion sensor and is computed the same way as GV without the z dimension [26]. 
We found a significant main effect of age group for both features (GV: F1,18 = 6.44, p < 0.05, GA: F1,18 = 20.18, p < 0.001) 
with children requiring a larger 3D and 2D space (GV: mean (M) = 0.20m3, standard deviation (SD) = 0.11, median = 
0.18, GA: M = 0.55m2, SD = 0.17, median = 0.52) as compared to adults (GV: M = 0.16m3, SD = 0.12, median = 0.12, GA: 
M = 0.44m2, SD = 0.13, median = 0.41), when normalized for height. We also found a significant interaction effect 
between age group and motion type for both features (GV: F13,234 = 3.28, p < 0.001, GA: F13,234 = 4.68, p < 0.001). Post-
hoc tests for GV revealed that children and adults require similar 3D space for all motion types except Jump, Lift leg to 
side, and Touch toes, wherein children required a larger 3D space. For GA, children required a larger 2D space for the 
motions Jump, Swipe screen, and Raise hand. Therefore, in general, children use more space (proportionally) to 
perform motions as compared to adults. 

3.4.2 Ratio of Movement (RM) [GL]. 
RM measures the ratio of the quantity of movement (QM) in the upper and lower body where QM measures the 
amount of movement, computed as the cumulative pairwise Euclidean distance between corresponding joints of time-
consecutive frames [26]. We found a significant main effect of age group (F1,18 = 35.82, p < 0.001), with children having 
a lower ratio of upper to lower body movement (M = 2.91, SD = 2.04, median = 2.41) as compared to adults (M = 3.77, 
SD = 3.45, median = 2.29). Although we found a significant interaction effect (F13,234 = 4.68, p < 0.001), post-hoc tests 
revealed no significant difference between interaction pairs after Tukey correction. These findings indicate that for the 
motion types we considered, children move their upper body more in comparison to their lower body. 

3.4.3 Performance Time (PT) and Average Gesture Speed (AGS) [GL]. 
PT measures the time a user takes to perform a motion while AGS is the ratio of the quantity of movement to 
performance time [26]. We found a significant effect of age group for both features (PT: F1,18 = 8.08, p < 0.01, AGS: F1,18 
= 29.37, p < 0.001) with children moving faster (M = 3.20s, SD = 1.17, median = 2.90) and at a higher speed (M = 
0.16m/s, SD = 0.09, median = 0.09) as compared to adults (PT: M = 3.76s, SD = 1.19, median = 0.14, AGS: M = 0.12m/s, 
SD = 0.07, median = 0.09). We also found a significant interaction effect between age group and motion type for both 
features (PT: F13,234 = 2.26, p < 0.01, AGS: F13,234 = 2.83, p < 0.01). Post-hoc tests revealed that children moved at similar 
speeds as adults for all motion types except Bend knee, Jump, Raise hand, and Swipe screen (Figure 3). Like ratio of 
movement, post-hoc tests for performance time showed no significant difference between interaction pairs after Tukey 
correction. These findings indicate that children generally move faster than adults, corroborating findings from prior 
work [3]. 

3.4.4 Body Posture Density (BPDe) and Body Posture Rate (BPR) [GL] 
BPDe is the ratio of the Body pose variation (BPV) to the gesture volume (GV). BPV measures the variability of body 
postures and is computed as the average Euclidean distance between the position of all postures of the motion and the 
average posture [26]. BPR is the ratio of BPV to the performance time [26]. We found a significant effect of age group 

Table 1: List of Articulation Features. * means the feature was significant for age group at p < 0.05. 

Global-Level Features (13) Joint-Level Features (11) 
Gesture Volume * 
Gesture Area* 
Quantity of Movement 
Quantity of Upper Movement 
Quantity of Lower Movement 
Difference of Movement 
Ratio of Movement* 

Performance Time* 
Average Gesture Speed* 
Body Pose Variation 
Body Pose Diffusion 
Body Pose Density* 
Body Pose Rate* 

Shape Error* 
Shape Variability* 
Bend Error* 
Bend Variability* 
Length Error* 
Size Error* 

Efficiency  
Time Error 
Speed Error* 
Acceleration Error* 
Jerk Error* 



8 

for both features (BPDe: F1,18 = 10.74, p < 0.01, BPR: F1,18 = 18.99, p < 0.01), with children having lower posture densities 
(M = 6.70m-2, SD = 3.19, median = 5.89) but higher posture rates (M = 0.42m/s, SD =0.26, median = 0.37) as compared to 
adults (BPDe: M = 8.05m-2, SD = 4.28, median = 6.87, BPR: M = 0.32m/s, SD =0.21, median = 0.24). We also found a 
significant interaction effect between age group and motion type for both features (BPDe: F13,234 = 3.16, p < 0.001, BPR: 
F13,234 = 1.91, p < 0.05). Children and adults had similar posture densities for all motion types except Lift leg to side and 
had similar posture rates for all motion types except Bend knee, Jump, and Put hands on hips. These findings suggest 
that children’s and adults’ motions will differ in appearance (i.e., the distribution of their body postures) when the 
space and time they require to perform the motion are considered.  

3.4.5 Shape Error (ShE) and Shape Variability (ShV) [JL]. 
ShE measures the average absolute deviation of the shape of a joint path in a motion instance from the shape of the 
same joint path in the joint task axis and is computed as the Euclidean distance between the 3D points of both joint 
paths. ShV measures how uniform the shape errors are along a joint path and is computed as the standard deviation of 
the distances between the joint paths. The formulae for computing the features are: 

𝑆ℎ𝐸 =  
1

𝑛
∑‖𝑗𝑐(𝑖) − 𝑗𝑡(𝑖)‖

𝑛

𝑖=1

, 𝑆ℎ𝑉 =  
1

𝑛 − 1
∑‖𝑗𝑐(𝑖) − 𝑗𝑡(𝑖)‖

𝑛

𝑖=1

− 𝑆ℎ𝐸 

We found a significant effect of age group for both features (ShE: F1,18 = 137.20, p < 0.0001, ShV: F1,18 = 29.37, p < 0.001) 
with children having higher shape errors (M = 0.31, SD = 0.08, median = 0.31) and shape variabilities (M = 0.17, SD = 
0.06, median = 0.17) as compared to adults (ShE: M = 0.20, SD = 0.08, median = 0.21, ShV: M = 0.11, SD = 0.06, median = 
0.10). We also found a significant interaction effect between age group and motion type for both features (ShE: F13,234 = 
4.70, p < 0.0001, ShV: F13,234 = 4.41, p < 0.0001). Children had higher shape errors than adults for the motions Bend 
Knee, Bow, Forward lunge, Jump, Lift leg to side, Point at camera, Put hands on hips, Raise arm to side, Swipe screen, 
and Throw ball far (Figure 3). They had higher shape variability than adults for the motions Forward lunge, Kick ball 
hard, Point at camera, Swipe screen and Throw ball far. Therefore, children show more variations in how they move 
their body parts as compared to adults for most motion types, thus making them more inconsistent.  

3.4.6 Bend Error (BE) and Bend Variability (BV) [JL]. 
BE measures users’ tendency to bend or curve the joint path and is computed as the absolute difference between the 
turning angles of the 3D points of a joint path in a motion instance and a joint path in the joint task axis. Given a 3D 
point p, its turning angle is the angle between p and the previous point (p-1) and p and the next point (p+1) [27]. BV 
measures how uniform the bend errors are along the joint path and is computed as the standard deviation of the 
differences between the turning angles. The formulae for computing the features are: 

𝐵𝐸 = 
1

𝑛 − 1
∑‖𝜃𝑐(𝑖) − 𝜃𝑡(𝑖)‖

𝑛

𝑖=1

, 𝐵𝑉 =  
1

𝑛 − 1
∑‖𝜃𝑐(𝑖) − 𝜃𝑡(𝑖)‖

𝑛

𝑖=1

− 𝐵𝐸, 𝜃𝑖 = < 𝑗𝑖−1𝑗𝑖̅̅ ̅̅ ̅̅ ̅. 𝑗𝑖𝑗𝑖+1̅̅ ̅̅ ̅̅ ̅ 

Table 2. Subset of motions used, selected from the Kinder-Gator dataset from Aloba et al. [4]. Terms in 
parentheses indicate the abbreviated motion name. 

Gestures 
Touch your toes (Touch toes) 
Point at the camera (Point at camera) 
Raise your hand (Raise hand) 
Raise your arm to one side (Raise arm) 
Bend your knee (Bend Knee) 
Put your hands on your hip and lean to one side  
  (Put hands on hips) 
Punch (Punch) 
Bow (Bow) 

Do a forward lunge (Forward lunge) 
Lift your leg to one side (Lift leg to side) 
Jump (Jump) 
Kick a ball as hard as you can (Kick ball hard) 
Throw a ball as far as you can (Throw ball far) 
Swipe across an imaginary screen in front of you 
 (Swipe screen) 
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Figure 3. (left) Performance Time (GL) by age group and motion type. (right) Shape Error (JL) by age group 
and motion type. 

We found a significant effect of age group for both features (BE: F1,18 = 78.61, p < 0.0001, BV: F1,18 = 36.50, p < 0.0001) 
with children having higher bend errors (M = 0.31, SD = 0.09, median = 0.30) and bend variabilities (M = 0.41, SD = 
0.09, median = 0.39) as compared to adults (BE: M = 0.24, SD = 0.09, median = 0.23, BV: M = 0.35, SD = 0.10, median = 
0.26). We also found a significant interaction effect between age group and motion type for both features (BE: F13,234 = 
7.35, p < 0.0001, BV: F13,234 = 6.81, p < 0.0001). Children had higher bend errors than adults for the motions Lift leg to 
side, Raise hand, and Swipe screen, and had higher bend variability than adults for motions Raise hand and Swipe  
screen. Hence, children vary in how they bend their body parts to perform motions across instances of the same 
motion. 

3.4.7 Length Error (LE) and Size Error (SE) [JL]. 
LE measures a user’s tendency to stretch their joint articulation path and is computed as the absolute difference 
between the path lengths of a joint path in a motion instance and a joint path in the joint task axis. SE measures a 
user’s tendency to stretch the joint path with respect to the gesture volume (GV) and is computed as the absolute 
difference between the volumes of the smallest bounding box encompassing each joint path. The formulae for 
computing the features are:  

𝐿𝐸 =  |𝐿(𝑗𝑐) −  𝐿(𝑗𝑡)|, 𝐿(𝑗) =∑‖𝑗𝑖 − 𝑗𝑖−1‖

𝑛

𝑖=1

, 𝑆𝐸 =  |𝑉(𝑗𝑐) −  𝑉(𝑗𝑡)|, 𝑉(𝑗) = ∏ 𝑚𝑎𝑥(𝑝𝑑)

𝑑 𝜖 {𝑥,𝑦,𝑧}

−  𝑚𝑖𝑛(𝑝𝑑) 

We found a significant effect of age group for both features (LE: F1,18 = 35.28, p < 0.0001, SE: F1,18 = 37.44, p < 0.0001) 
with children having higher length errors (M = 0.44, SD = 0.27, median = 0.39) and size errors (M = 0.13, SD = 0.06, 
median = 0.13) as compared to adults (LE: M = 0.32, SD = 0.17, median = 0.29, SE: M = 0.10, SD = 0.07, median = 0.09). 
We also found a significant interaction effect between age group and motion type for both features (LE: F13,234 = 6.42, p 
< 0.0001, SE: F13,234 = 3.21, p < 0.0001). Children had higher length errors than adults for the motions Lift leg to side, 
Point at camera, Raise hand, and Forward lunge, and had higher size errors than adults for the Forward lunge motion. 
The length error findings corroborate the shape error findings in that children are inconsistent in how they move their 
body parts. The size error results indicate that not only do children require more space to perform motions (see section 
3.4.1), but they also vary in the amount of space they require to perform motions across instances of the same motion. 

3.4.8 Speed Error (VE), Acceleration Error (AE), and Jerk Error (JE) [JL]. 
VE, AE, and JE measure the average difference between the speed, acceleration, and jerk of a joint path in a motion 
instance and a joint path in the joint task axis, respectively. Speed, acceleration, and jerk are computed as the ratio of 
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quantity of movement, speed, and acceleration to performance time, respectively. The formulae for computing the 
features are: 

𝑉𝐸 = 
1

𝑛
∑|𝑆(𝑗𝑐(𝑖)) − 𝑆(𝑗𝑡(𝑖))|   

𝑛

𝑖=1

𝐴𝐸 =
1

𝑛
∑|𝐴(𝑗𝑐(𝑖)) − 𝐴(𝑗𝑡(𝑖))| 

𝑛

𝑖=1

 𝐽𝐸 =  
1

𝑛
∑|𝐻(𝑗𝑐(𝑖)) − 𝐻(𝑗𝑡(𝑖))| 

𝑛

𝑖=1

 

𝑆 =  

{
  
 

  
 
𝑋(𝑗𝑖+1) −  𝑋(𝑗𝑖)

𝑡𝑖+1 − 𝑡𝑖
  𝑖 = 1

𝑋(𝑗𝑖) −  𝑋(𝑗𝑖−1)

𝑡𝑖 − 𝑡𝑖−1
  𝑖 = 𝑛

𝑋(𝑗𝑖+1) −  𝑋(𝑗𝑖−1)

𝑡𝑖+1 − 𝑡𝑖−1
  𝑂𝑡ℎ𝑒𝑟

  𝐴 =   

𝑆(𝑗𝑖+1) −  𝑆(𝑗𝑖)

𝑡𝑖+1 − 𝑡𝑖
  𝑖 = 1

𝑆(𝑗𝑖) −  𝑆(𝑗𝑖−1)

𝑡𝑖 − 𝑡𝑖−1
  𝑖 = 𝑛

𝑆(𝑗𝑖+1) −  𝑆(𝑗𝑖−1)

𝑡𝑖+1 − 𝑡𝑖−1
  𝑂𝑡ℎ𝑒𝑟

  𝐻 = 

𝐴(𝑗𝑖+1) −  𝐴(𝑗𝑖)

𝑡𝑖+1 − 𝑡𝑖
  𝑖 = 1

𝐴(𝑗𝑖) −  𝐴(𝑗𝑖−1)

𝑡𝑖 − 𝑡𝑖−1
  𝑖 = 𝑛

𝐴(𝑗𝑖+1) −  𝐴(𝑗𝑖−1)

𝑡𝑖+1 − 𝑡𝑖−1
  𝑂𝑡ℎ𝑒𝑟

 

𝑋(𝑗𝑖) = 𝑎𝑟𝑐 − 𝑙𝑒𝑛𝑔𝑡ℎ =  ∑‖𝑗𝑎 − 𝑗𝑎−1‖

𝑖

𝑎=2

 

We found a significant effect of age group for all features (VE: F1,18 = 23.05, p < 0.001, AE: F1,18 = 80.67, p < 0.0001, JE: 
F1,18 = 70.07, p < 0.0001) with children having higher speed errors (M = 0.30, SD = 0.12, median = 0.27), acceleration 
errors (M = 0.28, SD = 0.13, median = 0.25), and jerk errors (M = 2.85, SD = 1.72, median = 2.41) as compared to adults 
(VE: M = 0.27, SD = 0.10, median = 0.21, AE: M = 0.19, SD = 0.11, median = 0.17, JE: M = 1.69, SD = 1.72, median = 2.41). 
We also found a significant interaction effect between age group and motion type for all features (VE: F13,234 = 3.51, p < 
0.0001, AE: F13,234 = 5.01, p < 0.0001, JE: F13,234 = 5.92, p < 0.0001). Children had higher speed errors than adults for the 
motions Lift leg to side and Swipe screen; they had higher acceleration errors for the motions Punch, Raise arm to side, 
and Swipe screen; and they had higher jerk errors for the motions Bow, Lift leg to side, Punch, Put hands on hips, 
Raise arm to side, Swipe screen, and Throw ball far. Our speed error results indicate that even though children move 
consistently faster than adults (i.e., because there was no significant effect of age group for Time error), they vary in 
the rate at which they move their body parts over the duration of the motion. Prior work has also noted that high 
levels of jerk indicate that motions are performed quickly, with more urgency and less smoothness [31]. Since the 
global-level features showed us that children move faster and with higher speeds, taken with these results, we can also 
deduce that children move with significantly higher acceleration and jerk as compared to adults. Hence, children’s 
motions will be less smooth in general as compared to adults’ motions. 

4 Children’s Motion Qualities 
Overall, our results showed that children move differently from adults in ways that can be quantified with specific 
posture- and joint-motion-based articulation features. For example, children move faster and are more inconsistent in 
how they move their body parts to perform motions, as compared to adults (Figure 3). Next, we looked across the 
features to identify themes, in which a theme is an inference from the result (e.g., children require more space 
compared to adults). We grouped these themes to identify dimensions along which children’s motions differ from 
adults’ motions:  

4.1 Speed 
This dimension relates to how fast children perform motions. Children move faster than adults. Children are 
consistently faster than adults when performing motions (based on features like performance time and time error). 
This finding echoes and deepens prior work, which showed that children move faster than adults for walking and 
running motions [3]. Our results also show that children move with higher speeds but exhibit more variation in the 
speeds they use to perform motions (average gesture speed, speed error). Since speed measures the rate of joint 
movement and time is consistent, these variations mean that children are inconsistent in how they move their body 
parts to perform motions. Prior work in stroke gesture research has shown that gestures articulated at faster speeds 
have higher inconsistencies compared to gestures articulated at slower speeds [27]. Hence, there is a speed-accuracy 
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trade-off relating to children’s motion performance; they move quickly but are more inconsistent (i.e., less accurate) in 
how they perform motions. This trade-off emerges because children are still developing their motor abilities [9]. 

4.2 Intensity 
This dimension relates to the amount of effort used to perform motions. Children perform more exaggerated 
motions, therefore more intense, motions as compared to adults. Children and adults differ in the appearance of 
their motions when space and time are considered. Children’s postures are less dense and are completed faster than 
adults (Body pose density, Body pose rate) since they require more space and move faster (Gesture volume, 
Performance time). Hence, children’s motions will appear more exaggerated as compared to adults, thus requiring 
more effort [6,8]. Prior work in biomechanics supports this finding as it noted that exaggerated postures require more 
energy [23]. In addition, prior work in exercise motions also noted that exaggerated motions require less time [8]; an 
assertion evidenced by our Performance Time and Body pose rate findings. Like speed, intensity also plays a role in the 
inconsistencies children show when performing motions. Since children are still developing their motor skills [9] and 
move fast, the additional effort they use to perform motions could result in loss of control over body parts during 
movements, resulting in loss of balance (a behavior that leads to jerky motions).  

4.3 Smoothness 
This dimension relates to how well children move each body part that is necessary to performing a motion. 
Children’s motions are less smooth as compared to adults’ motions. Children jerk inconsistently when 
performing motions (jerk error) but move with higher levels of jerk in their motions (average gesture speed, 
performance time). Therefore, children are more likely than adults to make jerky motions, which explains why 
children are inconsistent in how they move body parts (shape error). Furthermore, the inconsistency in the uniformity 
of their shape errors means that children are also inconsistent in the ways in which they are inconsistent (shape 
variability). Prior work has noted that children in the age range we considered (i.e., 5 to 9) are still developing their 
motor abilities [9]. Therefore, we believe that they perform motions less smoothly as compared to adults because they 
have less expertise controlling body parts to perform motions. As mentioned in the previous section, speed and 
intensity also play a role in the smoothness of motions. Children are more likely to lose control over body parts when 
the motion is performed with high speed and forceful intensity, especially for complex motions involving the whole-
body (Forward lunge and Jump). Our Shape Error finding validates this idea as it showed that children are not as 
consistent as adults when performing both motions.  

4.4 Coordination 
This dimension relates to how well children move body parts relative to each other. This quality is closely related to 
smoothness, but coordination involves multiple body parts. Children make less well-coordinated multi-limb 
movements as compared to adults. Motions often require a lateral shift of an individual’s center of gravity and 
body balance due to postural changes [23]. Motions involving movements of lower body parts (e.g., Kick ball hard, Lift 
leg to side, and Bend Knee) shift a user’s center of gravity once they lift their foot. We know from our other themes 
that children move with high speeds and forceful intensity, behaviors that result in a shift in body balance [23]. 
However, children are still developing their postural stability [13], indicating that they will often overestimate the 
speed and intensity at which a motion should be performed and falter due to loss of balance. Prior work has noted that 
children move their arms when performing lower body movements to maintain balance [13], which may explain why 
children move their upper body more than their lower body when performing movements, as compared to adults 
(Ratio of Movement). Therefore, we see that children move extra body parts that are not necessary to motion 
performance, in order to stabilize their body once they begin to falter. Prior work further noted that how users account 
for a shift in body balance will determine their degree of coordination [23], with well-coordinated movements 
requiring control over body parts. Since children move these extra body parts in response to a loss in balance, they will 
not move these extra body parts as intentionally (i.e., with full awareness) as the key body parts they are actively 
moving. Therefore, children will have little to no conscious control over how these body parts move (e.g., direction of 
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movement). Combined with the smoothness dimension, the above statements indicate that children not only find it 
difficult controlling one body part in isolation but will also find it difficult coordinating multiple body parts. 

Prior work further noted that the movement of extra body parts results in inconsistencies in how children perform 
motions [4]. The authors computed the degree of agreement among the actively moving joints when performing lower 
body motions [4], in which the degree of agreement is defined as the total number of unique joint combinations used 
to perform a motion. They found that children had a lower degree of agreement, indicating higher inconsistency, for 
lower-limb motions due to some children moving upper body parts (e.g., arms) even though such body parts were not 
necessary for motion performance. 

5 Design Implications 
Our results contribute the first in-depth understanding of the quantifiable differences between child and adult motions. 
Based on our results, we propose guidelines both for designing motion-based applications and for developing motion 
recognition systems for children.  

Favor simpler motions. Children are less consistent when performing complex movements that involve the 
whole-body. Therefore, designers of motion applications should favor simple motions that children are familiar with 
(e.g., upper-body motions requiring a single limb) instead of more complex whole-body motions (e.g., lunges). 
However, favoring simple motions may not always be feasible (e.g., exercise games require some complex exercise 
motions to make ensure achieve moderate-to-vigorous physical activity [17,32]). Designers should provide 
opportunities for children to practice complex motions to get them more familiar with how the motion is performed.  

Be flexible about space requirements. Children require more space to perform motions and are inconsistent in 
the space they require to move body parts. Therefore, designers of whole-body applications should customize space 
requirements to ensure that children have enough space (with respect to area and volume). Furthermore, designers 
should program the application to verify proper space allowances (e.g., using the depth camera to detect hazards) to 
prepare for scenarios in which children make exaggerated motions that will require even more space. Space 
verification is important to prevent injury [11]. 

Favor looser pointing approaches. Prior work has adapted template-based stroke gesture recognizers that use 
one-to-one matching to motions [4]. However, children make jerky motions and are inconsistent in how they move 
their body parts to perform motions (shape error). Therefore, we recommend designers of motion recognition systems 
for children to use less stringent point-based approaches. For example, designers can use something similar to the 
many-to-one approach used in the $P+ stroke gesture recognizer [29]. This approach accounts for variations along an 
articulation path by choosing the best point in a template path that matches a given point in the candidate path, such 
that multiple points in the template path can be assigned to one point in the candidate path during recognition. This 
approach will be less affected by shape errors and shape variabilities, thus improving recognition. 

Account for extra limb movements. We saw children often moved extra limbs to perform motions, which 
resulted in inconsistencies in their motion performance. Therefore, designers of motion recognition systems should 
consider only the joints that users are actively moving intentionally. Prior work in motion recognition with the 
filterJoint method found an increase in recognition accuracy when only the minimum sufficient subset of the joints 
tracked by the motion sensor is considered [4]. For example, designers can use the filterJoint method to select all 
actively moving joints and use only these joints during recognition to improve accuracy.  

6 Conclusion and Future Work 
Although prior work had established that there are perceivable differences between children’s and adults’ motions, 
these differences had yet to be quantified. In this work, we presented a set of 24 global-level and joint-level features 
and evaluated them on a subset of motions from the publicly-available Kinder-Gator dataset [2] to illuminate 
differences. We found that children’s natural motions are less smooth and less coordinated, and are performed at faster 
speeds with higher intensities, than adults’ motions. Future work can also use our results to evaluate whether generated 
children’s gestures (e.g., in Embodied Conversational Agents) resemble actual children’s gestures for use in relevant 
applications. One limitation of our work is that motions in the Kinder-Gator dataset were tracked with the Kinect v1 
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[19], which is less accurate in comparison to high-precision mocap sensors. We used this dataset due to the lack of 
publicly available datasets with more precise tracking of children’s motions, and collecting new data was out of scope 
for our project. While our work did include approaches to mitigate tracking noise, e.g., the filterJoint method [4], 
future work can replicate our study on datasets tracked with higher-precision sensors (when available) to further 
validate our findings. Another limitation is that we only considered between-user consistency because Kinder-Gator 
only includes one example per user per motion. Future work can consider using our articulation features to analyze 
within-user consistency in one of two ways: (1) periodic motions, in which the same postures occur multiple times 
over a brief time period, such as multiple jumping jacks; or (2) multiple separate repetitions of the same motion type, 
at different time points. While Kinder-Gator does include some periodic motions which we did not analyze here, to the 
best of our knowledge, there is currently no dataset of children’s motions that include multiple separate repetitions. 
Based on our results, we proposed guidelines for designing motion recognition systems and motion applications for 
children. We hope that designers and researchers can adopt these guidelines to tailor motion recognition systems to 
children’s motion qualities for more accurate recognition and improve children’s interactive experiences in motion-
based applications. 
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