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Motion-based applications allow users to interact with a system or interface using motions.

These applications often require accurate recognition of motions to ensure meaningful interactive

experiences and are becoming increasingly popular among children. However, motion

recognition systems are usually trained on adults’ motions even though children move differently

from adults. Our findings showed that naı̈ve viewers could perceive the difference between

children’s and adults’ motions at levels significantly above chance when the motion was

abstracted from appearance cues (e.g., height). Our findings further showed that skeleton-based

motion recognition systems, which accept as input the positions of joints tracked by a motion

sensor in 3D space over time, perform poorly on children’s motions compared to adults’ motions.

Therefore, motion recognition systems should be tailored to children’s motion qualities to enable

accurate recognition.

To characterize children’s natural motion qualities, we focused on understanding how

children perform motions. We designed a method to analyze the key body parts that users move

during a motion and found that children perform motions more inconsistently compared to adults.

To understand why children’s motions are more inconsistent, we quantified the differences

between children’s and adults’ motions. We initially analyzed children’s and adults’ walking and

running motions using gait features and found that children move in less time and with higher

energy. Then, we generalized this analysis to a broader set of motions by defining 24 articulation

features (11 of which we newly identified), that quantitatively describe users’ motions
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performance. We analyzed these features on a subset of children’s and adults’ motions from the

Kinder-Gator dataset to reveal new insights about how children perform motions (i.e., their

motion qualities).

Based on our findings, we propose guidelines for tailoring motion recognition systems to

children’s motion qualities to enable accurate recognition of children’s motions and guidelines for

designing motion sets and motion applications for children. The implementation of these

guidelines to tailor actual recognition systems to children’s motions and evaluate their

performance is out of the scope of this dissertation work. Finally, we also provide ideas for

continued research in improving children’s interactive experiences in motion-based applications.
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CHAPTER 1
INTRODUCTION

The prevalence of low-cost tracking sensors that can accurately track users’ movements,

such as the Microsoft Kinect [89] and most recently, the Azure Kinect DK [90], has increased the

popularity of applications that support whole-body gesture interaction (i.e., motion-based

applications). For example, these sensors have enabled the development of exertion games that

translate physical movements into game commands to induce physical exertion, such as Kinect

Sports [109] and Just Dance 3 [131] and assistive robots that aid humans with tasks by relying on

motions to facilitate human-robot collaboration, such as the Baxter robot [83]. To support

whole-body gesture interaction, motion-based applications usually include motion recognition

algorithms that can accurately recognize the specific sets of motions that the applications support

(i.e., motion sets). Accurate recognition of motion sets plays an important role in users’

interactive experiences. Prior work has found that the precision of motion recognition algorithms

is positively associated with higher levels of immersion in exergames [98].

Motion-based applications are becoming increasingly popular among children as

researchers and practitioners have started using these applications to target children’s needs. For

example, exergames, such as iFitQuest [81] and Vortex Mountain [141], were specifically

designed to increase the time children spend engaged in physical activity. Researchers in the

emerging field of child-robot interaction have also designed robots that can facilitate social

interaction with children [12]. For example, Belpaeme et al. [12] designed a companion robot

that interacts with children using verbal (speech) and non-verbal (body movement) gestures to

help improve children’s experiences during a hospital stay and learn more about their health

conditions. However, motion recognition systems are usually trained on adults’ motions

[62, 105, 110, 153]. Children will likely move differently from adults due to differences in their

body proportions and stages of neuromuscular development [59]. Therefore, motion recognition

systems trained on adults’ motions will likely perform poorly on children’s motions. The goal of

this dissertation work is to answer the following research questions:

a. What are the differences between children’s and adults’ motions?
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b. What inferences can we make from children’s and adults’ motion differences to help tailor

motion recognition systems to children’s motions?

More specifically, our thesis statement is: “investigating the differences between children’s

and adults’ motion will inform an understanding of children’s natural motion qualities and allow

the generation of guidelines for tailoring motion recognition systems to children’s motion

qualities for accurate recognition.”

In this dissertation work, we began by investigating the perceptual differences between

children’s and adults’ motions to show that children do indeed move differently from adults. Due

to the obvious differences between children and adults that will likely affect their motions (e.g.,

body proportions), we believed that these differences will impact how they perform motions.

Therefore, naı̈ve viewers should be able to perceive the difference between children’s and adults’

motions. We conducted a perception study to investigate whether naive viewers could perceive

the difference between children’s and adults’ motions, when the motion was abstracted from all

appearance cues (e.g., face, height, and build) [64]. We found that naı̈ve viewers could perceive

this difference at levels significantly above chance, thus establishing that children move

differently from adults.

To show that these differences will result in poor recognition performance of children’s

motions, we evaluated the performance of three motion recognition algorithms that have been

shown to achieve good recognition performance (>80%) on adults’ motions [22, 5]. For the

evaluation, we used a subset of children’s and adults’ motions from the Kinder-Gator dataset [3].

The Kinder-Gator dataset, which I helped collect, is a dataset of 10 children and 10 adults

performing motions forward-facing the Kinect v1. We tested two template-based recognizers,

Dynamic Time Warping (DTW) and a motion recognizer that we adapted from template-based

stroke gesture recognizers [5], and a machine-learning recognizer using Support Vector Machines

(SVMs) [22]. All three algorithms compare the motion to be recognized (candidate motion) to a

set of motions selected for training (template motions) and select the motion from the training set

that is the most similar to the candidate motion. Our findings showed that all algorithms had
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higher recognition accuracies for adults’ motions (DTW: 73.6%, template-based adaptation:

81.4%, SVM: 81.4%) compared to children’s motions (DTW: 60.7%, template-based adaptation:

55.0%, SVM:70.0%). These findings showed that motion recognition algorithms should be

tailored to children’s natural motion qualities to enable accurate recognition of children’s motions.

However, the motion qualities that distinguish children’s motions from adults’motions are not

known, which makes tailoring motion recognition systems to children’s motion qualities difficult.

After seeing the results from our perception study, we know that there are perceivable cues

that differentiate child motion from adult motion. However, what exactly is being perceived has

not been identified: what are the differences between child and adult motion? If these differences

could be identified, then we can characterize children’s natural motion qualities. In this

dissertation work, we focused on understanding the nuances in how users articulate motions,

which we propose can be achieved by a) identifying the joints that are critical to performing

motions to investigate variations in how children and adults move their body parts when

performing said motions and b) identifying features that can quantify how the motion is produced

to aid in the analysis of child and adult motion. We designed a method, which we call

“filterJoint”, that selects the key joints that users are actively moving during the performance of a

motion [5]. We operated on ‘joints’ because our method works on motion that was tracked using

skeleton-based motion sensor technology, such as the Microsoft Kinect sensor [89] or the Vicon

motion capture sensor (Oxford Metric, Oxford UK). These sensors track the motion of users’

joints in space over time. Our focus on actively moving joints stemmed from the idea that both

tracking noise from the sensor and unintentional movements from the user can affect how each

joint is moved (e.g., joints that are not supposed to move will appear to move). Including such

joints during analysis of motions could lead to incorrect inferences about how users perform

motions. We compared the joints selected by our filterJoint method on a subset of children’s and

adults’ motions from the Kinder-Gator dataset and found that children are more inconsistent in

how they perform motions compared to adults [5].
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Although our findings established that children are inconsistent when performing motions

compared to adults, we are yet to understand why these inconsistencies occur because the

differences between children and adults are yet to be quantified. If we can quantify these

differences, then we can gain new insights into how children move (i.e., children’s natural motion

qualities). For example, we will be able to understand how and why children move inconsistently

compared to adults. To help quantify these differences, we begin by identifying features that can

aid with the analysis of walking and running motions. We initially concentrated on these motions

because we found from our perception study that naive viewers could differentiate these motions

with even higher accuracy compared to the other motions we selected for the study. We used

temporal (time) and spatial (distance) features from the gait literature that has been used to

characterize walking and running motions. We analyzed walking and running motions from the

Kinder-Gator dataset [3] and found that children generally complete walking and running motions

in less time and with higher energy compared to adults [4].

However, gait features are not generalizable to a broader set of motions (e.g., “Jump”) due

to their reliance on the periodicity of the motion. Hence, we identified a set of “articulation

features” to reveal new insights into the ways children perform motions. An articulation features

is any measure that quantifies a specific property associated with how a user performs a motion,

such as length, shape, and time. We used features from prior work [132] that describe whole-body

motions on a global level (i.e., dependent on the postures that make up the motion). However,

because these features focus on the whole body, they will not be useful for characterizing

properties of individual joints that are critical to performing motions. For example, when

performing a “Jump” motion, we expect users to lift both feet off the ground. Depending on how

users control the joints in their feet, there could be variations in how users lift their feet off the

ground, which could result in differences in how these users perform the “Jump” motion. In this

example, global level features will be useful in characterizing whether users are performing the

“Jump” motion as opposed to a different motion (e.g., “Bend your knee” motion), but these

features will not be useful in characterizing whether users moved individual joints that are
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responsible for performing the jump motion, such as limb movements [92] differently. To

characterize how users move individual joints, we identified a set of joint-level features (i.e.,

dependent on the joints tracked by the motion sensor) and analyzed these features on a subset of

children’s and adults’ motions from the Kinder-Gator dataset[3]. Our results showed that children

move differently from adults in ways that can be quantified with specific posture- and

joint-motion-based articulation features. For example, we found that children require space

(proportionally) and show more variations in how they move body parts to perform motions, as

compared to adults. To identify the optimal set of features for differentiating children’s motions

from adults’ motions, we used a feature selection approach that relies on the classification

accuracy of a machine learning recognizer. In this approach, we trained and tested the classifier

on the same subset of children’s and adults’ motions, in which each motion is represented in the

form (x,y) where x represents a set of articulation features and y represents the true label in which

the motion belongs (i.e., child, adult). We repeat the training and testing process and select the

subset of features that achieves the highest accuracy as the optimal set of features (more details in

Chapter 6). The optimal set of features achieved an accuracy of 81%, further indicating that our

articulation features are effective in the automatic classification of motions by age group (i.e.,

child vs. adult).

To provide further support for our quantitative results, we qualitatively analyzed children’s

motions to understand in what ways their motions are inconsistent from adults. During the

analysis, we also explored the differences between younger and older children’s motions since

prior work in motor development literature [23] has shown that age plays an important role in the

development of children’s motor skills, which will impact how children perform motions. We

used an inductive thematic approach [87] for the analysis, from which we revealed new findings

about children’s motion performance, further discussed in the dissertation.

Based on findings from our quantitative and qualitative work, which we synthesized to

reveal new insights about how children perform natural motions, we introduce a set of new design

guidelines for tailoring existing motion recognition systems to children’s motion qualities for
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accurate recognition of children’s motions.The guidelines proposed from our findings have the

potential to improve the performance of motion recognition systems on children’s motions since

prior work has found several correlations between global-level features and the performance of

motion recognition systems on adults’ motions [132] and 2D stroke gesture research has also

shown a correlation between articulation features and children’s stroke gesture recognition

performance [120]. The implementation of these guidelines to tailor actual recognition systems to

children’s motions and evaluation of their performance is out of the scope of this dissertation

work. We also propose guidelines for designing motion sets and motion applications for children.

We hope that researchers and designers will adopt these guidelines to improve children’s

interactive experiences with motion applications. Finally, we also provide ideas for continued

research in improving children’s interactive experiences in motion-based applications and

describe potential future research opportunities based on findings from our studies.

1.1 Overview of Work

This dissertation aims to characterize the differences in children’s and adults’ motions to

propose guidelines that future research can use to tailor motion recognition systems to children’s

motion qualities. The contributions of this dissertation include:

• Introduction of the Kinder-Gator dataset, a publicly available dataset containing the
motions of 10 children and 10 adults, to enable comparison of their motions 1

• Established that naı̈ve viewers can perceive the difference between child and adult motion
at levels significantly above chance when the motion is abstracted from appearance cues 2

• Comparison of the recognition rates for children’s and adults motions when both motions
are trained and tested independently on two skeleton-based motion recognition systems.

• Analysis of children’s and adults’ walking and running motions using time-based and
distance-based features from existing literature on the analysis of gait to establish a set of
features that quantify the differences between how children and adults walk/run.

1I acted as the first experimenter during the collection of half of the adult participants’ motions during which I
was responsible for informing the participant about the next motion to be performed and recording the motion as the
motion is performed. In addition, I was the first author during the publication of the dataset [3], responsible for writing
the paper and leading a team of students to organize the dataset for publication.

2I was responsible for abstracting the motion from all appearance cues (e.g., creating the point light display videos)
and analyzing the data collected to extract the results. For the publication [64], I designed the box plots and scatter
plots and wrote a section detailing how the motions were abstracted.
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• Implementation of an automated approach that selects only the key joints that are actively
moving joints during the performance of a motion and a presentation of how these joints
can facilitate an understanding of children’s and adults’ motion articulations.

• Identification of a set of joint-level features (i.e., depends on the joints tracked by the
Kinect) that characterize how children and adults move their joints when performing
motions.

• Analysis of children’s and adults’ motions using global-level features (i.e., dependent on
the posture) proposed by Vatavu [132] and our proposed joint-level features to quantify the
similarities and differences in how children and adults perform motions.

• Identification of an optimal set of articulation features for accurate classification of motions
by age group (i.e., child vs. adult)

• Identification of a set of qualitative themes explaining how children perform motions.

• Presentation of a set of design guidelines for future work to help design recognizers that can
achieve higher recognition rates on children’s motions.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 provides an overview of the

literature on children’s motor development and human motion recognition with emphasis on

skeleton-based human motion recognition. Chapter 3 presents the scope of this work, detailing

topics, such as the dataset and the population. Chapter 4 presents studies to establish a need to

understand children’s motions. Chapter 5 presents initial studies investigating children’s and

adults’ motion articulations. Chapter 6 focuses on articulation features and motion descriptors

that can help to characterize children’s natural motion qualities. Chapter 7 introduces design

guidelines for tailoring motion recognition systems to children’s motions based on the findings

from previous chapters. Chapter 8 concludes the dissertation, detailing the contributions and

future work.
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CHAPTER 2
BACKGROUND

In this chapter, we present a detailed overview of human motion recognition with emphasis

on the design and evaluation of skeleton-based recognition algorithms. Because the goal of our

work is to tailor motion recognition systems to children’s motions, which is closely related to

prior work in stroke gesture research, this chapter will also present a review of prior work in

stroke gesture recognition.

2.1 Human Motion

In motion recognition research, human motion has been defined at different levels of

abstraction depending on what the researcher aims to understand from the motion. Bobick [16]

reviewed approaches used in computer vision for analyzing motions and proposed three levels for

understanding motions based on the nature and amount of knowledge required to understand the

motion. The first level is “movements”, which are atomic primitives, such as performing a

forehand shot in a tennis match, that require no contextual knowledge to be recognized [132]. The

second level is “activities”, which are sequences of movements for which understanding the

properties, such as variability of appearance [16], of the sequence is important. The last level is

“action”, which the author defines as large-scale events that typically include interactions with the

environment and causal relationships [16]. Human motions have also been categorized

conceptually based on the complexity and number of body parts involved into “gestures”,

“actions”,“activity”, and “group activities” [29, 66]. “Gestures” are movements of a person’s

body part that convey meaning, for example, “Lifting a leg” [1]. “Actions” are a collection of

gestures performed by a single person (e.g., “Walking”). “Activity” are a collection of actions

performed by at least two people (e.g., “Two people fighting”). “Group activities” are a

combination of gestures, actions, or interaction involving multiple groups of people (e.g., “Two

groups of people marching”)[29, 1].

Because of these different levels of abstractions (e.g., nature, complexity), throughout this

dissertation work, we define human motions as whole-body movements that contain information.

This definition follows the principle of Kurtenbach and Hulteen [71] who asserted that the

difference between a gesture (i.e., motion) and generic movement is dependent on the information
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it carries: “A gesture is a motion of the body that contains information. Waving goodbye is a

gesture. Pressing a key on a keyboard is not a gesture because the motion of a finger on its way to

hitting a key is neither observed nor significant. All that matters is which key was pressed.” This

movement ranges from simple limb movements, such as “Wave” and “Raise a hand”, to

movements involving multiple limbs of the human body, such as “Walk” and “Jumping jacks.”

2.2 Human Motion Recognition

Human motion recognition, also referred to as “whole-body gesture recognition” or “action

recognition”, is a systematic approach to understand and analyze human motion [143]. Human

motion recognition has many application areas that spread across a variety of domains, including

games (e.g., exergames), human-robot interaction (e.g., assistive robots), and security (e.g., smart

surveillance systems):

Exertion games. Exertion games, also known as exergames, combine videogames with

physical activity [80, 141]. Physical activity usually involves the performance of certain motions,

so exergames must support whole-body gesture interaction (i.e., interaction through motions). To

support whole-body gesture interaction, exergames include motion recognition systems that can

accurately classify whole-body gesture sets that the exergame supports.

Assistive robots. Assistive robots are designed to help relieve humans from heavy tasks in

home and industry settings through human-robot interaction. To facilitate human-robot

interaction between humans and robots, effective communication is important [77]. Since

motions are effective communication tools in human-human interaction, assistive robots usually

rely on motion recognition systems to communicate with humans [77].

Smart surveillance systems. Surveillance systems that monitor people and events through

videos are used for maintaining security in the real-world. Smart surveillance systems are systems

that can “preempt incidents through real-time alarms of suspicious behaviors” [52]. To achieve

this, smart surveillance systems must be able to automatically analyze visual surveillance videos.

Since motion is the most important cue for identifying dynamic content in videos [58], smart

surveillance systems must include accurate motion recognition systems to analyze motions in
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videos to identify suspicious behaviors. Human motion recognition has been studied actively for

more than two decades [66], primarily in the field of computer vision and human-computer

interaction (HCI). Research on human motion recognition has focused on developing accurate

and effective frameworks for human motion recognition [68]. Recognition of human motion has

been studied extensively using traditional computer vision approaches that rely on using pixels to

recognize motions from images and videos (i.e., vision-based human motion recognition)

[32, 111]. For example, Dreijer and Herbst subtracted each pixel in consecutive frames of a video

and averaged over all consecutive frames to create a new image that represents the average

changes in pose [32]. The researchers evaluated their approach on the KTH dataset [115], which

includes videos of 25 participants performing six actions (“Walking”, “Running”, “Jogging”,

“Hand waving”, “Boxing”, and “Clapping”) and found an accuracy of 86.0% using nearest

neighbor classification and 87.8% using Support Vector Machines (SVMs). Rodriguez et al. [111]

created a gesture recognizer that relies on a maximum average correlation height (MACH) filter

to recognize gestures from videos. The researchers found that their recognizer achieved up to

88.7% accuracy on the KTH dataset. For accurate recognition, vision-based approaches require

the identification of the human from the video. However, prior work has noted that this

identification can be challenging, especially in the presence of factors such as background clutter,

illumination changes, and occlusion [33, 93].

With the advent of motion capture (mocap) devices that track the movement of the body in

space over time, researchers have shifted focus from vision-based human motion recognition to

skeleton-based human motion recognition. Skeleton-based human motion recognition relies on

the information provided by the mocap device to analyze and recognize human motion data [154].

Mocap devices provide accurate information about human body movement (e.g., posture

information of the human body defined by the positioning of the body at a specific time instance).

For example, the Microsoft Kinect tracks the movement of 20 joints in 3D space over time. For

this dissertation work, we will focus on skeleton-based human motion recognition. In contrast to

vision-based approaches that need to separate the human from the background in the video to
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characterize the motion being performed, skeleton-based approaches eliminate this additional step

as the mocap devices already provide motion details about the human body [154]. The rest of our

review on human motion recognition will focus on skeleton-based human motion recognition.

2.3 Skeleton-Based Human Motion Recognition

Skeleton-based human motion recognition relies on properties of the skeleton information

(e.g., posture information) provided by the mocap device to analyze and recognize human motion

data [154]. In skeleton-based human motion recognition research, whole-body motions usually

consist of a set of body poses or postures unfolding in time such that each pose includes a set of

joints representing the skeletal structure of the human body. Human motion recognition

algorithms usually involve a two-step process: a) motion representation and b) motion

classification.

2.3.1 Motion Representation

The first step in recognizing human motions is to extract features that contain discriminative

information (e.g., spatio-temporal information) from the motion data, thus converting from data

space to feature space [125]. In skeleton-based human motion recognition, prior work has

extracted features from the motion of body parts [65, 99], which is a segment that connects two

joints, for example, the forearm is a body part that connects the wrist and elbow joints [21]. For

example, Nirjon et al. [99] extracted 22 features from the motion of body parts. These features

include the orientations of two upper body parts (upper arm and thigh) defined as cosine angles,

relative positions of two lower body parts (lower arm and leg) defined as the angle between the

lower body part and their corresponding upper part, and unit normals of the planes where the

body parts are located. This representation provides a general understanding of the motion being

performed. However, global representation ignores local structure information (e.g., movements

of specific joints), which can make recognition of similar motions challenging [33]. To address

this problem, researchers have extracted features from the local joints tracked by the motion

sensor (e.g., the wrist joint). A common feature extracted from the joints is the raw positional

data. For example, Martinez-Zarzuela et al. [86] used the raw motion trajectories of 15 joints to

23



represent the motion. The joint trajectory is a set of 3D points showing the positions of the joint

throughout the motion. Cippitelli et al. [22] and Duarte et al. [34] also used the raw input data but

focused on the skeleton frames provided by the Kinect instead of motion trajectories. Because

joint positions are not scale-invariant (i.e., the position is dependent on the height of the user),

researchers have used joint angles instead [93]. For example, Th Papadopoulos et al. [104]

represented motions in terms of the spherical angles of the relative positions of joints in the upper

limb, such as the left shoulder and right wrist, and joints in the lower limb, such as the left knee

and right foot. Ofli et al. [102] represented motions in terms of the 21 joint angles (e.g., angle of

the right shoulder and angle of the left knee).

Although research has primarily focused on either a global level or local level

representation, some researchers [21, 50, 154] have also combined both representations to benefit

from their advantages. For example, Chikhaoui et al. [21] extracted global features from skeleton

data by computing the distances between body parts (e.g., forearm) as well as relative and

absolute joint angles between body parts. The authors extracted local features by computing

pairwise distances of 3D joint positions at each time frame. Hachaj et al. [50] represented human

motion in terms of angles between body parts (global) and joint angles (local). The global

features extracted are the angles between forearms, the angle between vector defined by the joint

between shoulders and the joint between hips and thighs, and the angle between thighs while the

local features extracted are the joint angles of the elbow, shoulder, and knee joints.

Because features from these representations are usually applied to each frame or posture of

the motion with each frame consisting of multiple joints or body parts, the number of features

representing the entire motion can be very large. A problem resulting from this large number of

features is that it may not accurately capture discriminative information about motion types [86].

To address this problem, researchers usually employ feature selection and dimension reduction

techniques as an additional step when extracting features to improve the discriminative capability

of these features. For example, Chikhaoui et al. [21] and Martinez-Zarzuela et al. [86] applied

Singular Value Decomposition [43] and Fast Fourier Transform [24] respectively to select the
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most discriminative features, while Xia et al. [153] applied Linear Discriminator Analysis (LDA)

to extract the dominant features after feature extraction.

However, the reliance on these complex techniques usually results in features that are

difficult to reason about intuitively [17] because they are tailored to algorithmic understanding

(i.e., machine-readable). Therefore, researchers and practitioners will likely find it difficult to use

machine-readable features to understand how users actually perform motions even though such

information is important for improving the performance of motion recognition systems: prior

work has noted that the differences in how users perform similar postures of a motion can

negatively impact recognition accuracy [93]. In contrast, features that are tailored to human

understanding (i.e., human-readable) will be informative in understanding how users actually

perform motions [132]. To the best of our knowledge, only Vatavu has sought to propose features

that characterize human motion performance [132] from a human-readable perspective. Vatavu

proposed spatial features (e.g., features related to the amount of space required to perform the

motion), kinematic features (e.g., features related to the time it takes to produce the motion), and

body posture appearance features (e.g., features related to the deviation of the body posture from

the centroid posture) as features for understanding users’ whole-body gesture performance. These

features rely on the overall posture of the body and are therefore global-level features. To

combine the advantage of global- and local-level representations, we will also identify local-level

features that characterize human motion performance in this dissertation work. These features

(mine and Vatavu’s [132]) will be fully described in Chapter 6.

2.3.2 Motion Classification

This step involves using algorithms that rely on the features extracted from the motion

representation step to identify the motion type to which the motion data belongs. Classification

algorithms for human motion recognition can be divided into two main types: template matching

algorithms and machine learning algorithms. For each motion classification type, we discuss

common algorithms used for human motion recognition followed by examples of the algorithms’

recognition performance on publicly available dataset. Table 2-1 provides examples of publicly
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available datasets that are commonly used to evaluate motion recognition algorithms. Because the

evaluation of motion recognition algorithms is dependent on their performance (e.g., accuracy) on

action datasets. To aid the discussion of classification algorithms for human motion recognition,

we define the following terms: a) class: the motion type to which a motion data belongs (e.g.,

“Raise your hand”), b) candidate motion: the motion whose class is to be determined, c) template

motion/training motion: a motion selected for training the classifier and whose class is known,

and d) accuracy: ratio of correctly matched candidate motions to the total number of recognitions

attempted. Both candidate and template motions are defined by features extracted from the

motion representation set.

2.3.2.1 Template matching algorithms

Template-based algorithms directly match the candidate motion to a set of pre-stored

template motions using point-by-point correspondence. Based on some distance metric (typically

Euclidean distance), template matching algorithms select the template motion that is most similar

to the candidate motion. The most popular template-matching algorithm for classifying human

motions is Dynamic Time Warping (DTW). DTW measures the similarity between time sequence

of motion measurements or features extracted from the motion measurements (e.g., angle vectors

of each body part in a skeleton) [19]. The goal of DTW is to find the optimal alignment between

two sequences that may vary in time or speed [78], which usually involves speeding up or slowing

down a sequence in time [19]. Given a candidate motion and a template motion represented as

sequences, DTW constructs a 2D matrix whose size is the product of the number of frames in the

motions being compared. Each cell in the matrix is the matching cost, which is computed using

dynamic programming and a distance function. In the computer vision and Human-computer

Interaction (HCI) fields, Euclidean distance is typically used as the distance function [19], but

other distance functions, for example, Mahalanobis distance [88], have been used. DTW finds the

best match for the candidate motion by finding the template motion out of the set of pre-stored

template motions that minimizes the cumulative matching cost required to align to the candidate

motion sequence [19].
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Table 2-1. Examples of publicly available datasets commonly used to evaluate skeleton based
human motion recognition algorithms. Motions in the datasets are tracked using mocap
sensors. All the datasets presented focus on only adults’ motions. In the next chapter,
we will present the Kinder-Gator dataset, which I helped collect. The Kinder-Gator
dataset [3] is a publicly available dataset of children’s and adults’ natural motions.

Dataset Description Example Motions
MSR-Action3D dataset [75] A dataset of 20 actions from

12 adult subjects tracked us-
ing the Kinect

High arm wave, forward
punch, high throw, draw x,
jogging, tennis swing.

MSRC-12 Kinect Gesture
dataset [37]

A dataset that contains 12
actions performed by 30 adult
subjects forward-facing a
Kinect sensor. The dataset
comprises of video and
skeletal data.

Iconic gestures (e.g., Crouch
or hide, Shoot with a weapon,
Kick to attack an enemy).
Metaphoric gestures (e.g.,
start music, navigate to next
menu, take a bow to end the
session)

HDM05-Mocap dataset [96] A dataset that contains 100
actions performed by 5 adult
subjects using a Vicon sensor
(Oxford Metrics, Oxford UK).
The dataset includes videos
and skeleton data

Walking, dance, punch, kick,
throw, squats.

UTD-MHAD dataset [20] A multimodal dataset contain-
ing 27 actions performed by 8
adult subjects (4 males). Each
subject repeated an action 4
times. The dataset comprises
RGB videos, depth videos,
and skeleton data from Kinect
as well as data from a wear-
able inertial sensor.

Sports actions (e.g., bowling,
tennis serve). Hand gestures
(e.g., draw x, draw circle)
Daily activities (e.g., knock
on door, sit to stand). Training
exercises (e.g., lunge, squat).

Florence-3D dataset [116] A dataset that contains 9 ac-
tions performed by 10 adult
subjects. Each action was per-
formed twice or three times
in front of a stationary Kinect
sensor.

Wave, drink from a bottle, an-
swer phone, clap, tight lace,
sit down, stand up, read
watch, bow.

UTKinect dataset [153] A dataset that contains 10 ac-
tions performed by 10 adult
subjects. Each action was
performed twice in front of
a stationary Kinect sensor.
The dataset comprises RGB
frames, depth frames, and
skeleton data.

Walk, sit down, stand up, pick
up, carry, throw, push, pull,
wave and clap hands.
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DTW is efficient in comparing motions performed at different speeds [19] and has been

shown to achieve high recognition performance on motion datasets both in the computer vision

and HCI fields [62, 110]. Riofrı́o et al. [110] used DTW to recognize 6 upper limb motions

(“Right hand sweep left”, “Right hand sweep right”, “Right hand up”, “Left hand up”, “Two

hands up”, and “Two hands closed”) articulated by adults and tracked using the Kinect. Because

this dataset is not publicly available, it is not included in Table 2-1. The positions of 10 upper

limb joints were selected as features and the algorithm achieved recognition accuracy of 84.07%.

Similarly, Huu et al. [62] used DTW to recognize actions performed by adults and tracked using

the Kinect. However, instead of selecting the class of the template motion that minimizes the

Euclidean distance, the authors used a voting algorithm. The voting algorithm accepts the

Euclidean distances from comparing training motions to a candidate motion as input and returns

the class label as output. The relative angles between body parts were selected as features. The

algorithm achieved recognition accuracy of up to 83.82% and 93.91% on the MSRAction3D

dataset (see Table 1) and a dataset collected by the authors (not publicly available), which consists

of six motions (“Left hand low waving”, “Right hand low waving”, “Left hand high waving”,

“Right hand high waving”, “Hand clapping”, and “Greeting”), respectively.

However, because DTW relies on a 2D matrix for its implementation, it is computationally

expensive, thus making it unsuitable for real-time recognition [78]. To address this, researchers

have designed template-based algorithms that require lower computational costs. For example,

Jacknife [127] is an algorithm based on DTW that uses a rejection threshold to reduce the number

of template motions being compared to the candidate motion, thus decreasing the computational

cost. Wobbrock et al. designed the $-family of recognizers, for example, $1 [147], $N [8] for 2D

touchscreen stroke gestures. Kratz and Rohz [69] created the $3 recognizer which extended the

$-family of recognizers to 3D and enabled recognition of in-air hand gestures. This family of

algorithms resamples the number of frames in a template and candidate stroke gesture (or motion)

to the same size, which enables pairwise comparisons between the frames of both motions. Since

the algorithm performs a pairwise comparison, the computational cost is an order of magnitude
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less than that of DTW. In Chapter 5, we will show how the $-family template-matching

algorithms can be adapted to enable accurate recognition of whole-body motions.

2.3.2.2 Machine learning algorithms

Traditional machine learning algorithms rely on statistical models to capture the unique

characteristics of each motion type [78]. A set of pre-labeled training motions are used to estimate

the parameters of a statistical model. The statistical model is usually referred to as a classifier

[78]. Given a candidate motion, the classifier returns a discrete value corresponding to the

predicted class to which the motion belongs. Common traditional machine learning algorithms

for human motion recognition are Support Vector Machines (SVMs) [22, 77], K-Nearest

Neighbors (KNNs) [152], Decision Trees [40], and Hidden Markov Models (HMMs) [153].

Support vector machines (SVMs) use planes to separate the set of training motions into

their respective classes. The difference between support vectors (training examples closest to a

hyperplane [77]) and a line is computed to define the margin of separation. The plane from

amongst the planes that maximize the margin is referred to as the optimal plane and is used to

determine the decision boundary for classification. When the training motion can be separated

using a plane, the motions are said to be linearly separable [26]. In contrast, when the training

motions are not linearly separable, SVMs introduce kernel functions, which transforms

low-dimensional training data to higher dimensional feature space (e.g., linear kernel [77]). Then,

an optimal hyperplane that separates the training motion in higher dimensions is used to create the

decision boundary for classification [78]. Hussein et al. [61] designed a recognition algorithm

that uses a covariance matrix representation of the skeleton joint locations and SVM as the

classification algorithm. The algorithm achieved recognition accuracies of up to 90.53%, 98.7%,

and 95.41% on three publicly available datasets: MSR-Action3D dataset, MSRC-12 Kinect

Gesture dataset, and HDM05 mocap dataset (see Table 2-1), respectively.

K nearest neighbors (KNNs) approach classifies the candidate motion based on the closest

K training motions (neighbors) [77, 107, 152]. The number K is a discrete value denoting the

number of neighbors used to predict the class of the candidate motion. The neighbors of the
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candidate motion are determined to compute the Euclidean distances between the set of training

motions and a candidate motion. Then, K nearest neighbors are selected by ordering the distances

in ascending order and selecting the first K motions. If K = 1, also known as 1-nearest neighbor,

the predicted class of the candidate motion class is equal to the class of the training motion with

the least Euclidean distance. If K > 1, the predicted class of the candidate motion is equal to the

most frequent class from among the classes of the K nearest neighbors of the candidate motion.

Wu et al. [152] designed a recognition algorithm that uses the relative position of joints, as well

as the angular velocity, and angular acceleration over joints over time as features. These features

were combined with a KNN classifier, modified so that the voting system is dependent on the

frames of the motion. Evaluation of the algorithm on the MSR-Action3D dataset and the

UTD-MHAD dataset showed an accuracy of 92.34% and 90.47%, respectively.

Decision trees consist of a collection of nodes and edges connected to a tree structure

constructed using the training motions [78]. Each node in the tree, also known as a split node,

represents a test on one of the features, the edges represent the outcome of the test, and the leaf

node represents the class labels. Each of the split nodes of a decision tree is regarded as a weak

classifier since it returns an outcome based on the feature being used in the test. Hence, decision

trees are referred to as an ensemble of weak classifiers [78]. The predicted class of a candidate

motion is equal to the class in the leaf node that emerges from the traversal of the tree from its

root node. An ensemble of decision trees in which a random subset of features is selected at each

split node is called a “Random Forest” [78]. Garcia-Hernando and Kim [40] designed a

recognition algorithm that relies on the joint position as features and a transition forest, which is

an ensemble of decision trees that can discriminate the transitions between pairs of independent

frames, as the classifier. Evaluation of the algorithm on the MSRC12 action dataset and the

MSR-Action3D dataset showed an accuracy of 94.22% and 94.57%, respectively.

Hidden markov models (HMMs) are extensions of Markov chains and consist of several

hidden states and state transitional probabilities showing the probability of moving between states

[78]. The training motions belonging to a class label are used to build a hidden Markov chain for
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that class label. The predicted class label of a candidate motion corresponds to the label of the

Markov chain with the most likely state sequence. Xia et al. [153] designed a recognition

algorithm that computes a histogram-based representation of joints tracked using the Kinect along

with an HMM classifier. The authors evaluated the algorithm on the MSR-Action3D dataset and a

self-collected 3D action dataset (not publicly available) comprising ten motions (e.g., walk and

throw) performed by adults. On the MSR-Action3D dataset, the algorithm achieved a 98.61%

accuracy when two-thirds of the motion data was used as training, while on the self-collected

dataset, the algorithm achieved 90.21%.

Neural networks. Recently, researchers have started exploring algorithms that rely on deep

learning to recognize human motions [153, 105]. Unlike traditional machine learning algorithms

that require features that accurately reflect the discriminative information about the data [78],

deep learning approaches do not need a careful selection of features for recognition [77]. These

algorithms have been shown to achieve higher recognition accuracy compared to other

recognition and are currently considered stateof-art algorithms for human motion recognition.

Patsadu et al. [105] applied a Z-score normalization to joint positions and compared the

recognition performance of a neural network classifier against an SVM and decision tree

classifiers. The algorithms were evaluated on a dataset collected by the authors comprising three

actions (sit down, lie down, and stand) performed by six adult subjects. Results showed that the

neural network classifier achieved the highest accuracy (100%), followed by the SVM classifier

(99.75%) and the decision tree classifier (93.91%). However, deep learning algorithms usually

require a large amount of training data [77] and are more computationally expensive than

template-based and traditional machine learning approaches, such as SVMs and KNNs.

Although all of these algorithms have been shown to achieve good recognition accuracy

(>80%), they have only been evaluated on adults’ motions. Children differ from adults in how

they perform motions, as supported by our past work [64], so recognition systems trained on

adults’ motions will likely perform poorly on children’s motions. As researchers and practitioners

increasingly design motion-based applications for children that include motion recognition
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algorithms, tailoring motion recognition systems to children’s motion qualities to enable accurate

recognition becomes important. However, the motion qualities that quantify the differences

between how children and adults perform motions are not known, which makes tailoring motion

recognition systems to children’s qualities difficult. This dissertation work will focus on

identifying the motion qualities that distinguish child motion from adults’ motion to propose a set

of guidelines for tailoring motion recognition systems to children’s motion qualities.

2.4 Tailoring Stroke Gesture Recognition Systems to Children’s Stroke Gestures

Prior work in stroke gesture recognition has found that stroke gesture recognizers have

lower recognition accuracies for children’s gestures compared to adults’ gestures [6, 149].

Anthony et al. compared the recognition accuracy of stroke gestures produced by children ages 7

to 16 and adults using the $N-protractor stroke gesture recognizer and found that children’s

gestures had lower recognition rates (81%) compared to adults’ gestures (90%) [6]. Similarly,

Woodward et al. [149] found the recognition accuracy of gestures produced by children ages 5 to

10 (84%) was lower than those produced by adults (94%). Because of these findings, stroke

gesture researchers have suggested the need to tailor stroke gesture recognizers to children’s

stroke gestures. Shaw et al. [121] investigated the differences between children’s and adults’

stroke gestures using the features defined by Anthony et al. [7] and Vatavu et al. [135]. Anthony

et al. [7] identified 10 geometric features (e.g., path length) and two kinematic features (e.g.,

production time) that characterizes how both children and adults produce stroke gestures. Vatavu

et al. [135] identified 12 relative accuracy features that characterize deviations from a reference

gesture defined as a “gesture task axis” (e.g., shape deviation). Findings from their research

showed differences between children and adults in several features. For example, the authors

found that children exhibit longer path lengths and higher shape errors compared to adults.

Furthermore, the authors found that children are more inconsistent in how they produce gestures

as characterized by higher variations in some of the features, and this inconsistency causes higher

recognition errors in children’s gestures compared to adults’ gestures.
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Like stroke gestures, our past work showed that when two motion recognition systems that

have been shown to achieve good recognition accuracy on adults motions (>80%) were tested on

a dataset of children’s and adults’ motions, the systems performed worse for children’s motions

compared to adults’ motions (DTW recognizer: adult = 76.3% [SD = 16.7%] child = 47.0% [SD

= 19.9%], SVM recognizer: adult = 84.5% [SD = 16.6%] child = 60.9% [SD = 12.1%]), more

details will be presented in Chapter 4. Hence, there is a need to tailor whole-body motion

recognizers to children’s motions. This work aims to address this issue by identifying the features

that characterize the differences in how children and adults perform motions.

33



CHAPTER 3
SCOPE

In this chapter, we present the scope within which this dissertation work is situated by

providing details about the children’s agegroup we will focus on, the type of motion sensor used

to track the motions, and the dataset we will use to analyze motion data.

3.1 Population

The ability to make movement relies on motor development, which is the study of the

progression in a person’s ability to perform motions [106]. Motor development is usually

age-related [23] and although well-developed in adults, children are still in the process of

developing their motor skills. Our work will focus on children ages 5 to 10 years old. The years 5

to 10 mark an important period in children’s motor development [41]. At age 5, children are

starting to make eager and confident movements [44] compared to children below age 5. Children

at this age can also distinguish between the left and right sides of their body, also known as

laterality [23]. By age 6, children become aware of the body, i.e., they understand what the body

can do and can identify body parts. At age 7, children become aware of spatial and temporal

orientations [41]. At age 8, children can understand body references [23], such as “swipe right.”

At age 8 to 9, children are more adept at perceiving motions, such that they can now track objects

moving in an arc ([94] as cited in [23], p. 36) and at age 9, children are able to more accurately

intercept moving objects [23]. Furthermore, children at this age are more skillful when

performing motions [41]. At age 10, children have acquired expertise to identify body parts in the

left and right side of the body and understand the relationship between body parts [54].

Through a review of child development, motor development, and motor learning literature,

Cleland-Donnelly et al. [23] further asserted that the developmental characteristics of children in

primary grades (kindergarten to grades 2 (K-2) and age range 5 to 7 years in the U.S.) differ from

children in intermediate grades (grades 3 to 5 (3-5) and age range 8 to 10 years in the U.S.). For

example, children in primary grades can perform fundamental movements, such as jumping,

while children in intermediate grades can perform more complex movements, such as gymnastics.

Therefore, children in the 5 to 10 age range are at varying levels of motor development and these

variations could result in inconsistencies in how children perform motions. By focusing on this
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age range, we can investigate how children at varying levels of development perform motions and

how age impacts how children perform motions.

3.2 Motion Sensor

In this work, we use the Microsoft Kinect (Microsoft, n.d.), which is a motion sensor that

has been commonly used to track how users move body parts during the performance of a motion

for interaction purposes[22, 34]. The Microsoft Kinect is a low-cost tracking device that consists

of an RGB camera, a depth sensor, and a microphone array (Figure 3-1A). The Kinect tracks the

movement of a user skeleton containing 20 joints of the human body (Figure 3-1B) in

3-dimensional (3D) space: x for horizontal, y for vertical, and z for depth using a right-handed

coordinate system. In this coordinate system, the positive direction of the x-axis is to the left of

the Kinect, the positive direction of the y-axis is vertically upward, and the positive direction of

the z-axis is away from the sensor (Figure 3-1C). The user skeleton is tracked at 30 frames per

second, thus resulting in 3D skeletal frames that capture information about the posture of the

body during the motion. The posture of the body is usually defined as the 3D position of each

joint in the user skeleton expressed in meters.

Figure 3-1. The Kinect Sensor and Skeleton. A) Kinect sensor (Photo courtesy of author). B)
Kinect skeleton showing the 20 joints tracked. The skeleton also depicts a posture or
pose in a motion. C) Coordinate frames centered at the Kinect (Photo courtesy of
author. Source: Eakta Jain, Lisa Anthony, Aishat Aloba, Amanda Castonguay,
Isabella Cuba, Alex Shaw,and Julia Woodward. 2016. Is the Motion of a Child
Perceivably Different from the Motion of an Adult? ACM Transactions on Applied
Perception 13, 4 (jul 2016), 1–17.).
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3.3 Kinder-Gator Dataset

Publicly available human motion datasets usually include adults’ motions (i.e., the motions

are performed by adults; see table 2-1 in the previous chapter). When datasets have focused on

children’s motions, these motions have primarily focused on adults performing “childlike”

motions (i.e., adults imitating how a child will perform the motion) [138]. This focus on adults is

likely because recording children’s movement using mocap devices (i.e., motion capturing) can

be challenging as children sometimes struggle to follow instruction and have shorter attention

spans [108]. Furthermore, there is additional cost and effort associated with recruiting children

for research studies [31]. To the best of our knowledge, prior to our work, there was only one

publicly available dataset that includes the motions of children and adults. Guerra-Filho and

Biswas [46] created the Human Motion Database (HMD), which includes motions from 50 child

and adult participants performing 70 motions. In this dataset, children performed the motion as

demonstrated by the researchers (i.e., scripted motion) to maintain the consistency of the

performance across the range of motions performed. However, to enable recognition of motions

as users would naturally perform them in everyday contexts (e.g., during interaction with

whole-body applications), it is important that our work focuses on “natural motions” to capture

unique behaviors exhibited by children, as opposed to scripted motions, which may not capture

these unique behaviors since children are mimicking an adult’s performance of the motion.

Because of the lack of publicly available datasets of children’s natural motions, in our early work

I helped collect the Kinder-Gator dataset [3] 1, a dataset of children’s (ages 5 to 10) and adults’

natural motions tracked using the Microsoft Kinect v1.

3.3.1 Dataset Collection

We collected a total of 58 motions in our dataset. A critical aspect for the creation of the

dataset was to ensure it encompassed a diverse range of human motions, so motions in the dataset

1I acted as the first experimenter during the collection of half of the adult participants’ motions during which I
was responsible for informing the participant about the next motion to be performed and recording the motion as the
motion is performed. I also led a team of students to organize the dataset for publication and led the effort for writing
the paper, which was later accepted as a short paper to the European Graphics Conference (Aloba et al., Eurographics
’18)
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were chosen by reviewing prior studies involving whole-body motions [57, 63, 100]. Based on

the review, we selected motions that were used in prior work, that both children and adults would

be familiar with, and that we hypothesized would show differences between children and adults.

We also included a set of simple “warm up” motions like waving to get participants familiar with

the idea of performing motions and the study procedure. The motions collected from this review

were classified into four categories:

• Warm-up motions. We selected nine motions that are easy to perform and are used in
day-to-day activities (e.g., “Wave your hand”).

• Exercise motions. We selected fourteen motions that induce exertion when performed and
are commonly used in exercise and fitness activities (e.g., “Do five jumping jacks”).

• Mime motions. We selected sixteen motions that involve the conceptualization of
imaginary objects (e.g., “Climb an imaginary ladder”).

• Communication motions. We selected nineteen motions are used to convey information
(e.g., “Motion someone to stop”).

Table 3-1 shows the full set of motions in the dataset.

3.3.2 Study Setup

Motions in the Kinder-Gator dataset were collected using Kinect v1.0 hardware and its

accompanying Kinect for Windows SDK v1.8 software. Two researchers were responsible for

prompting for the next motion to be performed and controlling the Kinect software. In each study

session, a participant stood within an area denoted by a square (47 x 47 inches), forward-facing

the Kinect and movements were only allowed within that specific area. The denotation of a

specific area was to ensure that people did not move outside the tracking range of the Kinect.

Participants performed all motions from a standing position. Before the start of each motion,

participants stood with their arms outstretched in the form of a T-pose and then counted down

from 3 to 1 while lowering their arms to their sides. The T-pose was required to get an accurate

demarcation of the intended natural start of a motion.

The duration of each motion was dependent on the motion being performed. For “Wave

your hand”, “Walk in place”, “Walk in place as fast as you can”, “Run in place”, “Run in place as
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Table 3-1. A list of the 58 motions in the Kinder-Gator dataset
Warm-up Exercise Mime Communication
Raise your hand Put your hands on

your hip and lean to
the side

Push an imaginary
button in front of you

Point at the camera

Raise your other hand Put your hands on
your hips and lean to
the other side

Swipe across an
imaginary screen in
front of you

Motion someone to
stop

Wave your hand Put your hands on
your hips and twist
back and forth

Swipe across an
imaginary screen in
front of you with your
other hand

Motion someone to
come here

Wave your other hand Touch your toes Fly like a bird Draw a [circle,
square, triangle] in
the air

Bow Do a forward lunge Fly like an airplane Draw the letter [A, C,
K, M, X] in the air

Raise your arm to one
side

Lift your leg to one
side

Swim Make the letter [Y, M,
C, A, K, P, T, X] with
your body

Raise your other arm
to the other side

Lift your other leg to
the other side

Kick a ball –

Bend your knee Walk in place Kick a ball as hard as
you can

Bend your other knee Walk in place as fast
as you can

Kick a ball with the
other leg

–

– Run in place Kick a ball as hard as
you can with that leg

–

– Run in place as fast as
you can

Throw a ball –

– Jump Throw a ball as far as
you can

–

– Jump as high as you
can

Throw a ball with
your other arm

–

– Do five jumping jacks Throw a ball as far as
you can with that arm

–

– – Punch –
– – Climb an imaginary

ladder
–
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Table 3-2. Motions performed by participants in the Kinder-Gator dataset for which the motion
was demonstrated to the participant by a researcher during the collection of the dataset

ID Gender Age Hand Grade Level
Children

337 F 5 B Pre-K
595 M 5 B Pre-K
106 M 6 R K
290 M 6 R K
342 F 6 R K
474 F 6 R 1
169 M 8 R 2
103 F 8 R 3
723 M 8 R 3
644 F 9 R 4

Adults
565 F 19 R High school
577 F 19 R Some college
604 F 20 R Some college
976 M 20 R Some college
734 M 22 R Undergrad
876 F 23 R Undergrad
921 M 26 L Undergrad
888 F 25 R Grad
970 M 28 R Grad
934 M 32 R Grad

fast as you can”, “Fly like a bird”, “Swim”, “Climb an imaginary ladder”, and “Do five jumping

jacks”, the duration was typically about five cycles (10 steps or repetitions). For motions

involving making poses with the body, the duration was 3 seconds, since the experiment staff

required participants to hold the pose for 3 seconds. For all other motions, the duration of the

motion varied depending on the participant. Participants always returned their hands down to

their sides to demarcate the end of the motion. In each session, a participant performed one

example of all 58 motions. In order to ensure that participants were performing the motions as

naturally as possible, participants were allowed to perform the motion free form. That is, we did

not require that the motions be performed in any predefined manner. When a participant did not

understand how a motion was to be performed from verbal explanations alone, one of the

researchers showed an example. (This occurred for four different children on two to six actions,
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and two different adults on one to two actions: details in Table B-1 of the Appendix). To ensure

the motions performed were natural, participants performed the motion only after the researcher

had stopped demonstrating an example, so as to reduce the likelihood of imitation.

3.3.3 Participants

We recruited ten children and ten adults via flyers, emails, and advertisements on social

platforms. Recruitment and study protocol procedures were approved by our Institutional Review

Board. Child participant ages ranged from 5 to 9 (mean = 6.70, SD = 1.42). Five children were

female. Two children were ambidextrous and none were left-handed. We focus on ages 5 to 9,

since children in this age group are still growing in terms of their motor development, as detailed

in the previous section. The adult participant ages ranged from 19 to 32 (mean = 23.40, SD =

4.33). Five adults were female and only one adult was left-handed. All participants were familiar

with motion interaction systems such as the Microsoft Kinect. Participants each received a $10

gift card to a local grocery store as compensation. The full demographic information of

participants in the dataset is shown in Table 3-2.

3.3.4 Data Collection

A total of 19 RGB videos and 1159 motion trials (58 motions x 20 participants) are

included in the dataset; RGB video for all actions for one adult (ID: 934) and skeleton data for

jump high for one adult (ID: 565) is missing due to a software error. The total time it took to

perform the motions ranged from 247s to 363s (M = 301s, SD = 37.2) for children and from 302s

to 424s (M = 344s, SD = 35.3) for adults. Each motion in the dataset is organized so that the first

column has the timestamps. The timestamps are recorded in milliseconds and the difference

between the last row and the second row of the first column gives the duration of the motion in

milliseconds; the first row is the header. Subsequent columns have the x, y, and z positions of

each joint as recorded by the Kinect. The timestamp is recorded in milliseconds and the joint

positions are recorded in meters. The last two columns have the ID of the participant and the

motion label; the values are always the same in each row for one motion (Figure 3-2). Then, each

motion’s data is saved as a .csv file.
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Figure 3-2. Data format of motions in the Kinder-Gator dataset. The first column is the
timestamp, subsequent columns are the x,y, and z positions of joints tracked by the
Kinect sensor, and the last two columns are the ID of the participant and the motion
being performed respectively. Each row is a pose/posture of the motion being
performed.

3.4 Summary

To understand how children perform motions, in this dissertation, we will use the

Kinder-Gator dataset, which focuses on children ages 5 to 10 performing motions tracked using

the Kinect sensor. Specifically, we will show through several studies analyzing the motions in this

dataset that there is a need to tailor whole-body motion recognition systems to children’s motion

qualities.
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CHAPTER 4
ESTABLISHING A NEED TO UNDERSTAND CHILDREN’S MOTIONS

To motivate this work, we previously mentioned that children’s motions are likely to differ

from adults’ motions due to differences in their body proportions and stages of neuromuscular

development [59] and that because of this difference, whole-body recognition systems trained on

adults’ motions will likely perform poorly on children’s motions. In this chapter, we present two

studies to corroborate these ideas. Through these studies, we establish a need to understand the

differences between how children and adults in order to tailor whole-body recognition systems to

children’s natural motion qualities.

4.1 Investigating People’s Perception of Children’s and Adults’ Motions

To investigate if there are indeed differences between child and adult motion, in my first

year, my co-authors and I conducted a perception study 1 to investigate whether naı̈ve viewers can

perceive the difference between child and adult motion when the motion is abstracted from all

appearance cues (e.g., face, height, and build) [64].

4.1.1 Stimuli Preparation

We selected 6 dynamic motions from 8 participants (4 adults and 4 children) in the

Kinder-Gator dataset [3]; at the time of this study, the Kinder-Gator dataset included motions

from all child participants but only 4 adult participants, so we selected only 4 child participants to

balance the data. The motions selected include “Do five jumping jacks”, “Fly like a bird”, “Jump

as high as you can”, “Run in place as fast as you can”, “Walk in place”, and “Wave your hand”.

Figure 4-1 illustrates the motion data, which has been pelvis-aligned to account for differences in

joint angles and velocities of children and adults. For each of the motion, we created a point-light

display (PLD) representation. A PLD refers to points of lights representing each joint in the

human body 4-2. Since the Kinect tracks data at 30 fps, we later rendered the PLD representation

as a video played back at 30 fps.

1I was responsible for abstracting the motion from all appearance cues (e.g., creating the point light display videos)
and analyzing the data collected to extract the results. For the paper, I designed the box plots and scatter plots and
wrote a section detailing how the motions were abstracted. This paper was later published in the Transactions of
Applied Perception journal (Jain et al., TAP 2016)
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Figure 4-1. Motion data showing every tenth frame for jumping jacks for an adult motion. ©Jain
et al. [64].

To account for natural size differences between children and adults, which can cue

participants about the agegroup of the participant performing the motion, we scaled all stimuli

videos to the same physical height. To achieve this scaling, we computed the mean value over all

frames of the twenty joints tracked by the Kinect:

µy =
∑

N
i=1 ∑

20
j=1 y j

i

20∗N
(4-1)

Then, we subtracted the joint positions along the y dimension from its mean to center the

positions relative to the mean. To scale the skeleton to canonical height within the video, we

zoomed the render camera towards or away from the skeleton. Afterward, we added padding

above and below to account for any extra space needed when the motion requires a larger amount

of space to perform (e.g., “Jump as high as you can”).

4.1.2 Results

To identify whether naive viewers are able to perceive the difference between children’s and

adults’ motions, we created a survey wherein each question included a PLD video with an

accompanying two-alternative forced choice question asking whether the motion belongs to a

child or an adult and a free-form text answer about the motion that was performed. We recruited

34 participants but only 24 participants completed the survey.
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Figure 4-2. Point light display representations of motions considered in the perception study.
Each joint is represented as a point of light (white dot).

For each participant, we computed the percentage of correct responses among all answers

provided for the videos in the survey. We found that the percentage of correct responses for each

participant in the study was above chance level (i.e., >50%; Figure 4-3A). A one-tailed t-test on

percentage of correct response for both the child videos (mean = 62.1%, SD = 13.1%) and adult

videos (mean = 70.0%, SD = 13.7%) videos evaluated independently showed significance above

chance levels (child: t = 4.23, df = 20, p < 0.05, adult: t = 6.72, df = 20, p < 0.05; Figure 4-3B).

We also found that that for all motions considered, the percentage of correct responses was

significantly above chance (Figure 4-4).

Figure 4-3. Results from analyzing the survey responses. A) Percentage correct response for all
participants who responded to the survey. B) Boxplots showing median and
interquartile ranges of the percentage correct response grouped by age group. ©Jain
et al. [64].
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Figure 4-4. Percentage correct response by child and adult videos and by motions. Error bars are
95% confidence intervals. ©Jain et al. [64].

4.1.3 Discussion

From our results, we saw that naı̈ve viewers can perceive the difference between children’s

and adults’ motions at levels significantly above chance and about 70% for dynamic motions,

such as walking and running. These findings establish that children move differently from adults.

Therefore, whole-body recognition systems trained on adults’ motions will likely perform poorly

on children’s motions.

4.2 Evaluating the Performance of Skeleton-Based Motion Recognition Systems

To investigate the performance of whole-body recognition systems trained on adults’

motions on children’s motions, we selected three motion recognition algorithms that have

achieved good recognition accuracy (>80%) on adults’ motions [19, 22, 5]. These algorithms

include:

1. A template-based adaptation of stroke gesture recognizers to multiple articulation paths

2. A template-based recognizer using Dynamic Time Warping (DTW)

3. A machine-learning recognizer using Support Vector Machines (SVMs)
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For each motion recognition algorithm, we compared its recognition performance on children’s

and adults’ motions by training and testing the recognizer on children’s motions, and in a separate

experiment, training and testing the recognizer on adults’ motions. We used a subset of motions

from the Kinder-Gator dataset [3] for the comparison. The motions were selected to be distinct to

prevent conflicts, which can negatively affect the performance of the recognizer on both

children’s and adults’ motion. Prior to using these motions to test the algorithms, we manually

excluded the T-pose from each of the motion (we mentioned in the previous chapter that during

the collection of the dataset, each participant was required to perform a T-Pose prior to

performing the motion to get an accurate demarcation of the start of the motion). In this section,

we detail the motion selection process and the recognition process.

4.2.1 Motion Selection

Motion recognition algorithms are usually trained on motion datasets. Motions in these

datasets are usually selected to be distinct from each other since conflicts among motions can

negatively impact recognition. However, as shown in Table 3-2 in the previous chapter, motions

in the Kinder-Gator dataset are not distinct. We chose a representative (distinct) set of gestures

from the dataset by removing gestures that are currently out of scope of our work and gestures

with obvious conflicts in the dataset. The gestures we considered out of scope of our work are 3D

stroke gestures, in which the emphasis is on the shape or symbol being drawn (e.g., “Draw the

letter A in the air”) and periodic gestures: gestures in which the same set of poses occur multiple

times (e.g., “Run in place”). We excluded periodic gestures because instances of the same gesture

type that have different numbers of repetitions might not be matched properly to each other. After

exclusion, we grouped gestures that are similar in terms of how they are performed. First, we

grouped gestures that have mirrors, since the gestures being performed are the same, just with the

opposite limb (e.g., “Raise your other hand” is a mirror of “Raise your hand”). We also grouped

gestures that are the same motion differing only in strength (e.g., “Throw a ball” vs. “Throw a

ball as far as you can”; “Kick a ball” vs. “Kick a ball as hard as you can”) as these motions will

be articulated the same way. Lastly, we grouped the gestures (“Point at the camera”, “Motion
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someone to stop”, and “Push an imaginary button in front of you”). These gestures are difficult to

distinguish using the Kinect v1 alone, because their differences are based on the position of the

finger, which this sensor cannot track. We selected one gesture from each such group for the

representative set. Our final representative set comprises 14 gestures (Table 4-1). The rest of this

dissertation work will focus on the motions in this representative set.

4.2.2 Adaptation of Template Gesture Recognizers to Multiple Articulation Paths

Prior work in stroke gesture research has designed 2D stroke gesture recognition systems for

classification of 2D stroke gestures (e.g., letters and symbols) [147, 69]. For example, Wobbrock

et al. [147] designed the $1 recognizer, a template-based recognizer for identifying unistroke

gestures. Anthony et al. [8] and Vatavu et al. [134] designed $N and $P respectively as extensions

to $1 for recognition of multistroke gestures. Li [76] also designed protractor and Anthony et al.

[9] designed $N-protractor as closed-form solutions to $1 and $N respectively. These recognizers

have been shown to accurately recognize 2D stroke gestures, $1, $N, and $P achieve x,y, and z

accuracies when tested on 2D stroke gesture datasets respectively. Both 2D stroke gestures and

motions are similar in that they both involve paths moving in space over time: the former involves

the path of the finger on the touchscreen surface while for the latter, each body part moved by a

user creates a path in 3D space over the duration of the motion. Therefore, 2D stroke gesture

recognition systems can be adapted for recognition of 3D gestures. Kratz and Rohs [69] designed

the $3 gesture recognizer, a template-based recognizer that extends $1 to enable recognition of

3D gestures. The researchers also designed Protractor3D, a closed-form solution that extends

Table 4-1. Our distinct set of 14 gestures from the Kinder-Gator dataset
Gestures

Touch your toes (TYT) Do a forward lunge (DFL)
Point at the camera (PAC) Lift your leg to one side (LYL)
Raise your hand (RYH) Jump (J)
Raise your arm to one side (RAS) Kick a ball as hard as you can (KBH)
Bend your knee (BYK) Throw a ball as far as you can (TBF)
Put your hands on your hip and lean to one side
(PHL)

Swipe across an imaginary screen in front of
you (SIF)

Punch (P) Bow (B)
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protractor to 3D. However, these 3D gesture recognizers are limited to single articulation paths

(i.e., one 3D point in each frame over time). However, motions tracked by motion sensors usually

have multiple articulation paths (i.e., more than one 3D point in each frame over time). For

example, motions tracked by the Kinect v1, such as those in the Kinder-Gator dataset [3] have an

articulation path for each of the 20 joints tracked by the Kinect. Hence, these algorithms will need

to be adapted to multiple articulation paths to enable accurate recognition of motions.

To compare the recognition performance of these algorithms for children’s and adults’

motions, we developed a 3D template-based gesture recognition system that adapts the $3

recognizer [69] to multiple articulation paths by modifying the algorithm and using components

from protractor3D [70] and $P [135]. Because stroke gesture recognition algorithms are trained

and tested on adults’ gestures and prior work has shown that these algorithms perform poorly for

children’s gestures compared to adults’ gestures [6], we posit that our adaptation will also reflect

these findings. That is, our algorithm will perform poorer for children’s motions compared to

adults’ motions. In this section, we discuss the steps for adapting the algorithms to multiple

articulation paths and our recognition experiment using the representative set of motions from the

Kinder-Gator dataset [3].

4.2.2.1 Normalization

Given a set of M points that define an articulation path of a gesture, first, we smooth the

articulation path (i.e., the path traveled by a joint during movement) of each of the joints using an

exponential moving average filter with alpha = 0.1. Prior work [124] has found that this filter can

remove noise from joint data without introducing any smoothing artifacts to the data. Figure 4-5

shows the articulation path of the right elbow joint before and after smoothing the path. Then, we

use the $3 resampling step [69], which selects points so that the articulation path is defined by N

equidistant points. We resampled the articulation path of a joint to 32 points, which has been

shown to be adequate for recognition of stroke gestures [147]. After resampling, $3 rotates the

articulation path so that its indicative angle (i.e., the angle between the first point and the centroid

point of the articulation path [147, 69]) is zero. After rotation, $3 scales the articulation path
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Figure 4-5. Articulation paths when raising the right elbow before (green) and after (blue)
smoothing using the exponential moving average filter.

non-uniformly to a reference cube of size 1003 dimension. However, non-uniform scales are not

effective when the range of points is close to zero [147]. For example, in Figure 4-6, the range of

points of the green articulation path along the x-axis is close to zero. Hence, we used uniform

scaling as proposed in the $P recognizer [135], which applies the same scaling factor to all

dimensions. The uniform scaling factor is equal to the maximum range of points from among the

ranges of points from each dimension for that gesture instance. After scaling, $3 translates the

articulation path so that its centroid is at the origin. The above processes ensure that similar

gesture instances that differ only by speed, rotation, size, and position respectively can be

matched to each other. Lastly, $3 finds the optimal alignment between two articulation paths,

which is the alignment that gives the minimum average Euclidean distance [147, 69]. We use the

closed form solution in Protractor3D [70] to find the optimal alignment. We rotate with respect to

the base orientation of the motion using the approach from the original Protractor gesture

recognizer [76], so that dissimilar gesture instances that differ only in their orientation can still be

distinguished. For example, the gestures “Raise your arm to one side” and “Raise your hand”,

differ only in terms of their orientation (horizontal 90o and vertical 90o). The normalization step

improves recognition accuracy in the face of minor gesture articulation variations by users. Figure
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Figure 4-6. Motion paths for smoothed gestures “Raise your arm to one side” (blue) and “Raise
your hand” (green) for the same joint before and after normalization. A) Motion paths
for the gestures “Raise your arm to one side” (blue) and “Raise your hand” (green) for
the same joint. B) Same paths prior to optimal alignment. C) Same paths after
optimal alignment, where global rotational orientation is maintained.

4-6 shows example motion paths for one joint in two motion instances after applying all the

normalization steps.

4.2.2.2 Recognition

After normalization, $3 consecutively matches the points of the articulation path of the test

gesture to be recognized to each gesture in the training set. The gesture in the training set whose

articulation path has the lowest Euclidean distance to that of the test gesture is selected. To extend

this approach to multiple articulation paths, for each test gesture C and a gesture t in the training

set T , we normalize each joint ji in C and t. Thus, C becomes C
′
and t becomes t

′
. Then, we

compute the optimal alignment between joint ji
C′

in C
′
and the corresponding joint ji

t ′
in t

′
and

compute the average Euclidean distances e1 and e2 after rotating ji
C′

in C
′
to match ji

t ′
in t

′
(rc)

and ji
t ′

in t
′
to match ji

C′
in C

′
(rt) respectively:

e1 =
∑

N
k=1

√
∑q∈{x,y,z}(rc(k)q− t ′(k)q)2

N
(4-2)

e2 =
∑

N
k=1

√
∑q∈{x,y,z}(C

′
(k)q− rt(k)q)2

N
(4-3)
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di = min(e1,e2,e3,e4) (4-4)

where N is the number of points being considered. To account for directional differences

resulting from making the same motions with different limbs (e.g., raising the left hand vs. raising

the right hand), we rotated ji in C
′
180o ( f lip ji) by negating the position along the x-dimension.

We computed the distances e3 and e4 after rotating f lip ji to ji in t
′
(r f lip ji) and rotating ji in

t
′
to f lip ji (r t f lip), respectively. Then, we compute di as the minimum of e1, e2, e3, and e4.

The minimum average Euclidean distance d defines how close the gesture path between C and t

is, and is calculated as the sum of di over all joints p in C, where p is the number of joints tracked

by the motion sensor (i.e., p=20 for the Kinect). The gesture from T with the lowest Euclidean

distance to C is the recognition result, that is, t for which d = ∑
p
i=1 di is minimum.

4.2.2.3 Testing

We tested the recognizer on children’s and adults’ motions in two separate experiments.

First, we trained the recognizer on children’s motions and tested on children’s motions. Then, in a

separate experiment, we trained the recognizer on adults’ motions and tested on adults’ motions.

For testing, we use a leave-one-out cross validation (LOOCV) method [148]. In LOOCV, gestures

from one participant is used for testing while all other participants’ gestures are used for training.

The training/testing process is repeated until the recognizer has been tested on gestures from all

participants. Because the Kinder-Gator dataset [3] includes 10 children and 10 adults, for each of

the children’s and adults’ recognition experiments, we select motions from 9 participants for

training and the remaining participant’s motions is left out for testing. We repeat training/testing

10 times so each participant’s motions are used in one trial for testing. The accuracy of each trial

is the number of correctly classified gestures from among the gestures selected for testing, and the

overall accuracy is the sum of the accuracies across all trials divided by the number of trials (i.e.,

10 trials).
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Figure 4-7. Recognition performance of our adaptation of template-based gesture recognizers to
multiple articulation paths on children’s and adults’ motions in the Kinder-Gator
dataset. Error bars indicate 95% confidence interval.

4.2.2.4 Results

When evaluated on the 14 gestures from the representative set of children’s and adults’

motions in the Kinder-Gator dataset, our gesture recognizer achieved a recognition accuracy of

81.4% (SD = 6.9%) on adults’ motions and recognition accuracy of 55.0% (SD = 12.6%) on

children’s motions (Figure 4-7).

4.2.3 Template-Based Recognition Experiment Using DTW

For the next recognition experiment, we use Dynamic Time Warping (DTW). As a

reminder, DTW measures the similarity between time sequence of motion measurements or

features extracted from the motion measurements (e.g., angle vectors of each body part in a

skeleton) [19].To prepare the motions for recognition using DTW, first, we smooth the

articulation path using the same exponential moving average filter we used in the previous section

and then pre-process articulation paths of the motions using the $3 normalization steps described

in the previous section. This preprocessing step is important to ensure that that differences in

terms of speed, rotation, size, and position for instances of the same gesture type can be removed,

which will improve recognition accuracy in the face of minor gesture articulation variations by
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users. However, because DTW already performs a time warping to align motions during the

matching step [19], the algorithm is not affected by differences in the speed at which the motion

was performed. Hence, we excluded the resampling step in $1 [147], which normalizes motions

in terms of speed. We applied the following normalization steps:

1. Rotate the articulation path so that its indicative angle (i.e., the angle between the first point

and the centroid point of the articulation path) is zero.

2. Scale the articulation path uniformly to a reference cube.

3. Translate the articulation path, so its centroid is at the origin

Like the previous experiment, we use the same testing approach (i.e., we trained and tested the

recognizer on children’s motions and in a seperate experiment, trained and tested the recognizer

on adults’ motions using a leave-one-out cross validation (LOOCV) method [148]). When

evaluated on the 14 gestures from the representative set of children’s and adults’ motions in the

Kinder-Gator dataset, the Dynamic Time Warping (DTW) recognizer achieved a recognition

accuracy of 73.6% (SD = 14.3%) on adults’ motions and recognition accuracy of 60.7% (SD =

15.2%) on children’s motions (Figure 4-8).

4.2.4 Machine Learning Recognition Experiment Using SVM

For this recognition experiment, we used an SVM recognizer designed by Cippitelli et al.

[22]. The researchers showed that their recognizer achieved high recognition accuracies on

multiple publicly available datasets of adults’ motions. For example, the recognizer achieved

accuracies up to 86.1% on the Florence3D dataset and up to 95.1% on the UTKinect dataset (see

Table 2-1 in Chapter 2 for more details about these datasets). To prepare the motions for SVM

classification, given one instance of a motion, we used the following steps defined by the authors

[22] to extract features that capture distinct information about motion types:

Posture feature extraction. For each skeleton frame of the motion, a feature vector

representing each posture is created. To create the feature vector, each joint is first translated with

respect to the hip joint so that the centroid of its path is at the origin. The goal of this translation is
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Figure 4-8. Recognition performance of a DTW recognition algorithm on children’s and adults’
motions in the Kinder-Gator dataset. Error bars indicate 95% confidence interval.

to account for differences in the position where the motion is performed. Then, the joint is

normalized using the Euclidean distance between the shoulder center and hip joints to make the

resulting feature invariant to the height and build of the person.

Postures selection. Once the posture feature vectors have been created for all frames,

similar postures are grouped using a K-means clustering algorithm [53], where K for this

algorithm can be as low as 3 and as high as the minimum number of frames among the motions

being considered. K-means will partition the feature vectors such that each vector within a cluster

is closer to the mean for that cluster, also known as the cluster center, compared to the mean of

any other cluster. The K-means algorithm can be summarized as follows:

1. Select K vectors from the feature vectors randomly and assign them as cluster centers for
each of the K clusters.

2. For each cluster, compute the Euclidean distance between each feature vector and its cluster
center.

3. Assign each feature vector to the cluster with the minimum Euclidean distance.

4. Calculate the cluster center of each of the K cluster as the average of all the vectors in that
cluster.

5. Repeat the second, third, and fourth steps until there are no changes in the cluster in which
the vectors are assigned.
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Because the vectors to be clustered are time series consisting of 20 3D joints tracked using the

Kinect sensor, each cluster center is a vector consisting of 60 values. The cluster centers [C1, C2,

. . . , CK] are selected as the features, where the number of cluster centers is dependent on the size

of K.

Activity features computation: The K-means algorithm assigns a label to each posture

that corresponds to the cluster the posture was grouped into. The labels are arranged in the order

that the postures are recorded in the motion data, and this arrangement is used to concatenate the

cluster centers. For example, if the motion being considered has five postures [P1, P2, P3, P4, P5]

with corresponding cluster labels [2,3,2,1,2] based on the results from the clustering algorithm,

the cluster centers are concatenated in the order [C2, C3, C1]. The concatenated cluster centers are

used to represent the motion.

As mentioned earlier, the goal of these steps (posture feature extraction, postures selection,

and activity features computation) is to extract features (i.e., the concatenated cluster centers) that

capture discriminative information about the motion being performed. We applied these steps on

each of the motions in the representative set of motions we selected from the Kinder-Gator dataset

[3] to extract features. Cippitelli et al. [22] noted that their algorithm performs better with a high

number of clusters, so we chose K = the minimum number of frames from among all 14 motions

being considered and across all participants in the age group whose motions are being recognized

(i.e., child or adult). For adults’ motions, K = 46 while for children’s motions, K = 47. Therefore,

adults’ motions are represented by a feature vector of 2760 (i.e., K*60) values and children’s

motions are represented as a feature vector of 2820 values.

4.2.4.1 Testing

After representing all the motions using feature vectors representing the concatenated

cluster centers, Cippitelli et al. [22] classified the motions using a Support Vector Machine

(SVM). As a reminder, an SVM classifier uses an optimal hyperplane to separate the training

motion in higher dimensions to create a decision boundary for classification [77]. Using the same
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Figure 4-9. Recognition performance of Cippitelli’s recognition algorithm on children and adults’
motions in the Kinder-Gator dataset. Error bars indicate 95% confidence interval.

approach as the previous two recognition algorithms, we tested the performance of the algorithm

[22] by training and testing on children’s motions and in a separate experiment, training and

testing on adults’ motions using the leave-one-out cross validation (LOOCV) method [148].

4.2.4.2 Results

For adults’ motions in the Kinder-Gator dataset [3], the algorithm achieved a recognition

accuracy of 81.4% (SD = 16.6%) , which is similar to results found by the researchers on publicly

available datasets for adults’ motions. For children’s motions, the algorithm achieved a

recognition accuracy of 70.0% (11.6%) (Figure 4-9).

4.3 Summary

We evaluated three motion recognition algorithms that have been shown to achieve high

accuracy on adults’ motions. For each recognition algorithm, we compared its recognition

performance on children’s versus adults’ motions by training and testing the recognizer on

children’s motions and in a separate experiment, we trained and tested the recognizer on adults’

motions. Our findings showed that both the template-based and machine-learning recognizers we

tested achieved lower recognition accuracies on children’s motions compared to adults’ motions

(Our template-based Adaptation: adult = 81.4% [SD = 6.9%] child = 55.0%[SD = 12.6%], DTW

recognizer: adult = 73.6% [SD = 14.3%] child = 60.7% [15.2%], SVM recognizer: adult = 81.4%

[16.6%] child = 70.0% [11.6%]). These findings provide evidence to show that motion
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recognition algorithms that have been shown to achieve high recognition accuracy on adults’

motions will perform poorly on children’s motions. Taken together, the findings presented in this

chapter establish that there are motion qualities present in children’s motions that distinguish

them from adults’ motions. However, these motion qualities are not known, which makes

tailoring motion recognizers to children’s motions difficult. In the following chapters, we will

focus on characterizing children’s natural motion qualities by investigating the differences

between children’s and adults’ motions. This investigation will inform an understanding of how

children move, which we can then use to propose guidelines that future research can use to tailor

motion recognition systems to children’s motion qualities to enable accurate recognition.
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CHAPTER 5
TOWARD UNDERSTANDING CHILD AND ADULT MOTION ARTICULATIONS

Our perception study discussed in the previous chapter showed that there are perceivable

cues that differentiate child motion from adult motion. However, what exactly is being perceived

has not been identified: what are the differences between child and adult motion? If we can

identify these differences, then we can characterize children’s natural motion qualities. To do this,

we focus on understanding the nuances in how users articulate motions, which we propose can be

achieved by a) identifying the joints that are critical to performing motions to investigate

variations in how children and adults move their body parts when performing motions and b)

identifying features that can quantify how the motion is produced to aid in the analysis of child

and adult motion. In this chapter, we present two studies to help in characterizing the differences

between child and adult motion. In the first study, we present a method that identifies the joints

that are critical to performing motions. In the second study, we present a preliminary study that

quantifies differences between children’s and adults’ motion.

5.1 FilterJoint: Toward an Understanding of Whole-Body Motion Articulation

To understand the nuances in how children and adults articulate whole-body motions, we

designed a method that facilitates an investigation of the variations in how users move body parts

as they perform whole-body motions 1. Our method, which we call filterJoint, selects the key

joints that are actively moving during the performance of the motion. Whole-body motions

tracked using motions sensors, such as the Kinect [3] are characterized by multiple articulation

paths, each defined as the 3D positions of joints over the duration of the motion. However, not all

joints tracked by the motion sensor are necessary to perform a motion. Tracking errors of the

motion sensor [19] and unintentional movements from the user could make joints that are not

supposed to move appear to move. For example, to raise one’s hands, only the joints in the upper

limbs (e.g., hand, elbow) should move, while any movement in the joints of the lower limbs (e.g.,

foot) is likely due either to tracking noise of the sensor or to unintentional movements from the

user (see Figure 5-1). Including these articulation paths during the analysis of whole-body motion

1(Aloba et al., ICMI 2020). I was responsible for designing the filterJoint method, and analyzing the results using
a template-based stroke gesture adaptation. I was also the first author on the publication, responsible for writing our
research findings.
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articulation could result in incorrect inferences about how users perform whole-body motions as

well as introduce noise in the recognition process, thus affecting recognition accuracy. The paths

along which these joints move in space over time can then be analyzed to make inferences about

how children and adults articulate whole-body motions.

5.1.1 The FilterJoint Method

To identify the joints that are necessary to articulate a wholebody gesture, we designed a

method that automatically identifies only the joint paths that are due to intentional movements

from the user. In this method, which we call the filterJoint method, we attempt to select the

actively moving joints for a particular whole-body motion gesture instance by computing the

variations in joint movement and using a k-means algorithm to group the variations into two

clusters. The joints in the cluster with the higher mean (i.e., higher range of motion) are selected

as the actively moving joints for that motion. Given a motion instance m for which each joint is

defined by N 3D points:

m =
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1 j2
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1
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2 j2
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where jK

i is a 3D point showing the position of jK at time instance i, N is the number of points in

the motion path of jK , and K is the number of joints tracked by the sensor. We apply the

following steps to extract the moving joints for each motion instance:

First, we smooth the articulation path of each of the joints in m using an exponential

moving average filter with alpha = 0.1. Prior work [20] has found that this filter can remove noise

from joint data without introducing any smoothing artifacts to the data. The aim of the smoothing

process is to reduce articulation path noise due to tracking issues of the motion sensor.

We compute variations for each joint movement jK in m by computing the standard

deviation (SD):

SD =

√
∑

N
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A) B) C)

Figure 5-1. Motion paths when raising the right hand. A) Joints of the right hand and B) right
elbow that move. C) Joint of the foot that does not move.

where SD(m) = [SD( j1), . . . ,SD( jK)]. In an ideal scenario, we expect that joints that do not move

should have standard deviations close to zero. However, due to tracking noise exhibited by the

motion sensor and unconscious joint movements as users articulate motions, what happens is that

joints that should not move actually do move.

Thus, we attempt to classify intentionally moving joints using k-means [8], a clustering

algorithm that partitions a set of values into k disjoint clusters, such that each value within a

cluster is closer to the mean for that cluster compared to the mean of any other cluster. We posit

that SD(m) can be partitioned into two clusters: joints that move intentionally and joints that

should not move. We set the cluster size to two because we expect that joints that users are

intentionally moving should have much higher variations compared to joints that move due to

noise, such that these variations can be grouped into two separate clusters. Hence, we used

k-means to partition SD(m) with the number of clusters set to two (k = 2). The k-means algorithm

will define two clusters c1 and c2, each having a mean x1 and x2, respectively, and guarantees that

one of the means is greater than the other. We set the initial means of the clusters as max(SD(m))

and min(SD(m)) and k-means updates the means iteratively until all the values have been
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allocated to a cluster. The cluster with the higher mean (e.g., higher range of motion), c1, we

select as containing all the intentionally moving joints.

For whole-body gestures that require users to move all of their body parts, for example,

when making a “Jump”, we expect that most of the joint variations will be fairly close to each

other. However, with our 2-cluster k-means approach, these joint variations will be forced into

two clusters and the cluster c1 with the higher mean will be selected even though we would not

necessarily agree that the joints in c1 move more than the joints in c2. To account for such

motions, we use a threshold, such that if the difference between the cluster means is below the

threshold, then it means that the cluster with the lower mean (i.e., c2) still includes joints that are

actively moving. We compute the threshold as the average of the absolute difference between x1

and x2 for all motions being considered. If the absolute difference between x1 and x2 for motion

m is less than the threshold, we repeat step 3 on c2 (i.e., the cluster with the lower mean) to

further partition the joints. Joints that were initially clustered into c2 clearly do not move with as

much variation in position (i.e., as actively) as the joints previously clustered into c1. On the other

hand, splitting c2 again should be able to separate joints that have even less variation (i.e., due to

tracking noise from the motion sensor and unintentional movements from the user) from more

active joints. We add the resulting joints in the new cluster with the higher mean to the previously

selected set of actively moving joints (c1 from step 3).

The motion m is now defined by the joints selected by the filterJoint method. For example,

for a “Raise your hand” motion (right hand), our method will select the right hand, right wrist,

and right elbow from the full set of 20 joints (Table 5-1).

Table 5-1. Example motion types in the Kinder-Gator dataset with joints selected by our
filterJoint method.

Gestures Joints Selected
Raise your hand Right hand, Right wrist, Right elbow
Bend your knee Right knee, Right ankle, Right foot
Point at the camera Right hand, Right wrist, Right elbow
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5.1.2 Evaluating the FilterJoint Method

To evaluate that the filterJoint method does indeed select the key actively moving joints, we

adapt template-based gesture recognition algorithms. As mentioned in Chapter 2, these

algorithms compare an articulation of a gesture to other articulations of gestures using

point-by-point correspondence in order to select the articulation that most closely resembles the

one being tested based on a distance metric. Since the goal of our work is to understand how users

articulate whole-body motions, we use template-based approaches as opposed to state of the art

machine learning approaches because the former can be used to make intuitive inferences about

whole-body gesture articulation (e.g., whether users show variations in how they articulate

instances of the same gesture type). In template-based gesture methods, changes in the

articulation of the path will result in changes in the point-by-point correspondence that affect

recognition accuracy in a predictable way. In contrast, state-of-the-art machine learning

approaches, such as LSTMs and HMMs, use complex models and a “black-box” approach [8],

which makes it less clear how changes in the articulation path affect recognition results.

5.1.2.1 Evaluation

We compared the recognition accuracy when using our filterJoint method compared to a

baseline method (i.e., involving all joints tracked by the motion sensor). In template-based

algorithms, recognition accuracy is an indicator of the similarity between articulation of instances

of the same gesture type. That is, the higher the recognition accuracy, the higher the consistency

between users’ articulations of instances of whole-body gestures of the same type. Joint

articulation paths resulting from tracking noise of the sensor and unintentional movements from

the user will result in variations in how users articulate similar gestures, which will introduce

noise during the recognition process. This noise will detract from a recognizer being able to

accurately distinguish between motion types, so exclusion of such joints should improve

recognition accuracy. Since our filterJoint method attempts to filter out such joint articulation

paths, a higher recognition over the baseline method will indicate that our method was successful

in removing noisy or unimportant joints. For our evaluation, we use adults’ whole-body gestures
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from the publicly-available Kinder-Gator dataset [3]. We focus on only adults for this evaluation

because stroke gesture research has shown that adults tend to be more consistent than children in

how they articulate gestures. Hence, template-based stroke gesture recognizers perform better on

adults’ gestures compared to children’s gestures [2]. We used our representative set of 14 gestures

for the evaluation.

For the evaluation, we used our adaptation of 3D template-based gesture recognizers to

multiple articulation paths described in Chapter 4. As a reminder, we adapted the $3 gesture

recognizer [69] to multiple articulation paths by modifying the normalization steps using

components from protractor3D [70] and $P [135] as well as updating the recognition step to

account for multiple articulation paths. To apply this algorithm for our evaluation, depending on

the method being used (filterJoint vs. baseline method), the recognition step will only use joints

selected by the filterJoint method and all joints tracked by the motion sensor respectively.

Because the joints selected by the filterJoint method can vary in number depending on how a user

performs the motion, in the recognition step, the filterJoint method is first applied to the candidate

motion to select the actively moving joints and then the articulation paths of these joints are

compared to the corresponding articulation paths of each of the template motion in the template

set. For testing, we use a leave-one-out cross validation (LOOCV) method [148].

5.1.2.2 Results

Our filterJoint method achieved a recognition accuracy of 90.7% [SD = 6.8%] while the

baseline method achieved a recognition accuracy of 81.4% [SD = 6.9%] (Figure 5-2). A pairwise

t-test showed that the filterJoint method was significantly more accurate than the baseline (t(9) =

6.09, p < 0.01). Therefore, we can conclude that the filterJoint method successfully filters out

noisy joints that are not important to articulation.

5.1.3 Discussion

We have presented the filterJoint method, which filters out noisy or unimportant joint

motion paths in whole-body gesture articulations, because including such joints during the

analysis of whole-body gesture articulation could result in incorrect inferences about how users
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Figure 5-2. Performance of the gesture recognition algorithm. Error bars indicate 95% confidence
interval.

make motions. The articulation paths of joints selected by our method (i.e., key joints that are

necessary to articulating the whole-body gestures), can be analyzed to investigate nuances in how

users articulate whole-body gestures. We present two case studies using the Kinder-Gator dataset

[3] that showcase the kinds of new insights about how users articulate whole-body gestures that

our filterJoint method enables, and we highlight implications from these insights for selecting

whole-body gesture sets. While the first case study focuses on showing the efficacy of our method

in showing how users perform motions, our second case study focuses on shows how our method

can be used to differentiate child and adult motion. While we do not present general findings

about whole-body gesture articulation across all possible gesture types, we demonstrate the

applicability of our filterJoint method as a tool that designers can use to understand how users

articulate different gesture types, and help them select better gesture sets.

5.1.3.1 Case study: identifying overlaps in motions

Although we removed motions with obvious conflicts when selecting our original motion

set, our recognition results still showed recognition errors. We analyzed the confusion matrix,

which is a tool for exploring data in recognition algorithms, to get a better understanding of the
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confusions between motions (Figure 5-3). The specific confusions the recognizer makes among

motions may reveal insights about whole-body gesture articulation patterns.

An analysis of the confusion matrix from our LOOCV recognition experiment showed that

there are whole-body gestures that are confused for each other even though they do not share any

similarities that we would expect in terms of their poses. Since we have identified the actively

moving joints using our filterJoint method, we can examine the articulation paths of these joints

to understand how participants within the dataset articulate whole-body gestures. Our adaptation

allows us to explicitly determine how the articulation of whole-body gestures contributes to

confusions between otherwise dissimilar motions. For example, the worst confusions occurred

between gestures “Throw a ball as far as you can (tbf)” (7) and “Punch (p)” (6) (Figure 5-3, row

TBF, column P and row P, column TBF). We believe that these confusions are likely because both

gestures involve the act of swinging the arm(s) forward, so there is a high chance that users will

articulate these gestures in a similar fashion. Supporting our expectations, we found that for 6 out

of 10 participants, the actively moving joints selected by our filterJoint method for the p gesture

overlapped with those selected for the tbf gesture for at least one other participant. This finding

suggests an overlap between participants’ articulation of the p and tbf gestures. As another

example, the gesture “Kick a ball as hard as you can (kbh)” (8) was confused as “Do a forward

lunge (dfl)” (1) (Figure 5-3, row KBH, column DFL) and “Throw a ball as far as you can” (1)

(Figure 5-3, row KBH, column TBF). From our understanding of how the gestures kbh and dfl are

likely to be articulated, we expect that kbh should only involve movement of joints in the lower

limb (e.g., knee and foot) while the dfl motion should involve movement of both upper and lower

limbs. Contrary to our expectation, based on the joints selected by the filterJoint method, we

found that 8 out of 10 participants actively moved their upper limbs during the articulation of the

kbh motion. Although this behavior is not expected, prior work in biomechanics has shown that

upper limb movements can help to maintain a balance when only one foot is on the ground

[67, 145], which occurs when articulating the kbh motion.
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Figure 5-3. Confusion matrix for the recognition results with 9 training templates. Rows
represent the frequency of times the motion was categorized as the column. Correct
recognitions are along the diagonal

The gesture “Put your hands on your hips and lean to the side (phl)” (9) was also confused

with one other gesture: “Lift your leg to one side (lyl)” (1) even though the phl motion does not in

and of itself share a similarity with lyl (Figure 5-3, row PHL, column LYL). From our

understanding, we expect that the phl gesture should not actively involve lower limb movements

(e.g., foot). Our analysis of the actively moving joints corroborates our expectations; however, we

found that the participant whose phl gesture was misclassified did actively move their foot during

articulation. This foot movement could have resulted in the participant’s articulation of the phl

motion being confused for another participant’s articulation of the lyl motion because there would
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have been an overlap between the joints selected by our filterJoint method. We also expected that

the lyl motion should not involve joints in the upper limb (e.g., hand), but we found that four

participants actively moved their hand or shoulder during the articulation of this gesture. Prior

work has noted that the farther a user leans to one side, the higher the chance that the user will

lose balance due to a shift in their center of mass and gravity [103]. To compensate for the shift,

people may raise the leg opposite of the way they are leaning [97]. Hence, the participant may

have raised their leg or moved their upper limbs to maintain balance during the articulation of the

phl and lyl gestures respectively, thus, affecting their motion articulations.

The above findings suggest that when motions require balance, users may intentionally

move additional joints to maintain balance that we did not initially expect would be critical to the

movement. It is a positive outcome that our filterJoint approach is robust enough to ensure that

these joints are not filtered out. These findings also suggest that there are between-user

inconsistencies in whole-body gesture articulation, so a designer who might have done what we

did to select gestures would still see conflicts. Our approach can be used to detect these conflicts,

which can make it easier for designers to select a better set of gestures. For example, based on our

findings, we might want to exclude the gestures “Punch (p)” and “Kick a ball as hard as you can

(kbh)” from our gesture set to avoid the conflicts arising from users’ articulation of these gestures

with other gestures like “Throw a ball as far as you can (tbf)” and “Do a forward lunge (dfl)”,

respectively. We recommend excluding p and kbh since these gestures had more variations in how

users articulated them compared to the gestures they conflicted with (Figure 5-3).

We recommend that for applications that require a unique set of whole-body gestures (e.g.,

exergames), designers should consider applying our filterJoint method after selecting a distinct set

of gestures to further exclude gestures that overlap due to nuances in users’ whole-body gesture

articulation.

5.1.3.2 Case study: understanding motion articulations

In this case study, we use the filterJoint method to understand children’s and adults’ motion

articulations. The Kinder-Gator dataset [3] includes both children’s and adults’ motions, so we
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also investigated how the articulation paths selected by our filterJoint method can show

differences in children’s and adults’ whole-body gesture articulations. We investigated children’s

and adults’ degree of agreement for each of the gesture types in our representative set (Figure

5-4). We defined the degree of agreement as equal to the total number of unique joint

combinations selected within a gesture type. For example, for the gesture “Raise your arm to one

side”, adults in the Kinder-Gator dataset have only one unique combination (“hand right + wrist

right” (10 adults)). Children have four unique combinations for the same motion (“hand right +

wrist right” (2), “hand right + wrist right + elbow right” (6), “hand right + hand left + wrist right +

wrist left + elbow right” (1), and “hand right + hand left + wrist right + wrist left + elbow right +

shoulder right + foot left + knee right + head” (1)). We conducted a paired samples t-test to

compare degree of agreement in children and adults across gesture types and found a significant

difference (t(13) = 3.38; p < 0.01). Adults had a higher level of agreement (mean = 5.43±2.71)

than children (mean = 7.14±2.21).

These findings suggest that children are less consistent than adults in how they articulate

whole-body gestures, which has important implications for the selection of whole-body gesture

sets. For example, gesture sets that are suitable for adults are not necessarily suitable for children.

Using the Kinder-Gator dataset, we found that children had the highest degree of agreement for

gestures that use only arm movements (e.g., “Raise your hand”, 2 unique combinations and

“Raise your arm to one side”, (4)). On the other hand, children had low degree of agreement for

gestures involving the whole-body (e.g., “Jump”, 9 unique combinations) and gestures involving

lower-limb movements (e.g., “Lift your leg to one side”, 7 unique combinations) (Figure 5-4).

This finding could be due to the increased coordination among many joints required to perform

more complex movements. Since children are still developing their motor abilities [23, 54], they

are less likely to have experience coordinating multiple joints to perform movements compared to

adults. In addition, the higher degree of agreement in arm motions, which only involves

movement of the upper limbs, can be attributed to balance and postural stability. The lower-limb

motions in the Kinder-Gator dataset (e.g., “Lift your leg to one side”) usually require that the user
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Figure 5-4. Degree of agreement of children and adults for gestures in our gesture set (lower =
higher agreement).

maintains balance when performing the movement on one leg. Children are more likely than

adults to move other joints to maintain balance since they are still developing their postural

stability [55] (e.g., the arms play a functionally relevant role in balance among children [55]).

Hence, we recommend that, if possible, designers of whole-body gesture applications for

children should prefer gestures that require only upper limb movements, especially arm

movements, since children will articulate those motions more consistently, and thus recognition

will be more accurate.

5.2 Quantifying Differences Between Child and Adult Motion Using Gait Features

To inform an understanding of children’s natural motion qualities, for example, the reason

behind the inconsistencies in how children perform motions discussed in the previous section, we

focus on identifying features that can quantify the differences between child and adult motion2.

We initially concentrated on walking and running motions since findings from the perception

study (presented in the previous chapter) showed that naı̈ve viewers could perceive the difference

2I was responsible for reviewing the literature to identify the gait features and analyzing the features on walking
and running motions. I also led the effort on the paper, responsible for writing and presenting our research findings,
which was later accepted as an invited paper in the International Conference on Human-Computer Interaction (Aloba
et al., HCII 2019).
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between child and adult motion for dynamic motions (e.g., walking and running) with about 70%

accuracy [64]. To analyze these motions, we relied on the gait literature, which has identified

features that characterize walking and running motions from a physiological perspective

[128, 39, 60].

5.2.1 Gait Analysis

Gait is defined as one’s manner or style of walking [36]. The analysis of gait is defined as

the systematic study of human locomotion [39, 126], using the cycles and steps in the motion

(Figure 5-1). A gait cycle (stride) is defined as the period between a foot contact on the ground to

the next contact of the same foot on the ground again [39, 60]. A gait step is defined as the period

between a foot contact on the ground to the next contact of the opposite foot, also known as half a

gait cycle [60].

Wilheim and Eduard Weber [142] pioneered the study of spatial and temporal gait features

by showing that human locomotion can be measured quantitatively. This finding led to the

development of different quantitative methods for analyzing gait kinematics, of which the most

commonly used is the placement of 3D markers along segments of the human body [13]. Since

then, gait kinematics have been studied extensively. Researchers [25, 39, 60, 85, 112, 118, 123]

have placed reflective markers on adults walking at different speeds, and have analyzed distance

and time features of their gait such as stride length, step length, walk ratio, stride time, cadence,

and speed. Gait analysis has also been used to identify individuals from their gait. Gianaria et al.

[42] achieved 96% accuracy on classifying adults by gait by extracting gait features from Kinect

data and feeding the features into a support vector machine (SVM). Prior work has also analyzed

features from children’s gait [10, 38, 35, 122]. Dusing and Thorpe [35] analyzed the cadence of

children ages 1 to 10 walking at a self-selected pace, and found that cadence reduces as age

increases. Barreira et al. [10] also studied the cadence of children walking freely in their

environment. They found that children spent more time at lower cadences (0–79 steps/minute)

compared to cadences signifying moderate or vigorous physical intensity (120 steps/min).
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A limitation of the studies reviewed above is that they mainly focus on either children or

adults. Some prior work has studied the comparison between child and adult motion, but they

either focus on very young children [28] or older children [101] rather than a range of younger

and older children. Davis [28] extracted and fed features collected from children’s and adults’ gait

into a two-class linear perceptron to differentiate between the walking motion of young children

(ages 3 to 5) and adults. He found that gait features can be used to differentiate between young

children’s and adults’ walking patterns with about 93–95% accuracy. Oberg et al. [101] also

compared gait features across ages from 10 to 79 years, and found that the speed of the gait and

length of a step reduces with age. In this study, we extracted gait features such as cadence, step

time, and step length from walking and running motions of children in the Kinder-Gator dataset

[3] (i.e., ages 5 to 9) and adults to quantify the differences between children’s and adults’ walking

and running motions.

5.2.2 Gait Features

We surveyed the literature on gait analysis [25, 28, 39, 60, 85, 91, 112, 118, 128], and

identified ten features commonly used to characterize a person’s gait. Gait analysis has been

historically utilized to analyze walking or running motion that involves moving a distance away

from the starting point. One feature that is commonly examined in gait analysis is the step length.

The step length measures the distance between feet along the direction of motion, which for

moving motions is parallel to the floor. However, the walking and running motions in the

Kinder-Gator dataset [3] involve moving in place instead of moving away from a starting point.

Therefore, the direction of motion is perpendicular to the floor instead of parallel to the floor, so

we calculated the perpendicular distance (i.e., step height). This adaptation from step length to

step height is valid because both measure the peak distance between feet.

Of the ten features we identified, we eliminated cycle length, which is the distance between

successive placements of the same foot (measured as two step lengths). We eliminated this feature

because, for in-place motions, the same foot returns to nearly the same location between steps.

Measuring successive placements of the same foot using two step heights instead of two step
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lengths would imply the participant is moving continuously upward, e.g., climbing up a ladder,

rather than the in-place motions in our dataset [3]. We categorized the remaining nine gait

features into spatial and temporal feature groups (Figure 5-5). Spatial features are distance-based;

they include features which are dependent on the length (height) of a step in their computation.

Temporal features are time-based. They include features which are dependent on time in their

computation. We chose these nine features because prior research has shown that they are unique

per person [25], that is, analogous to a fingerprint, and can be used as a biometric measure [14].

The nine features include:

Step width (m). This is a spatial feature. The step width is the maximum lateral distance

between feet during a step [128]. It is measured as the horizontal distance between the position of

one foot and the other foot during a step. This feature evaluates how wide or narrow the step

taken is.

Step height (m). This is a spatial feature and is an adaptation of the step length. Step length

is defined as the distance by which a foot moves in front of the opposite foot [128, 39, 60]. Since

the walking and running motions in the Kinder-Gator dataset [3] involve moving in place rather

than forward over a distance, we define the step height as the distance a foot travels above the

other foot during a step. It is measured as how high above the ground vertically a foot is during

the highest part of a step.

Relative step height. This is a spatial feature, and is defined as the length of a step in

relation to the height of the person [28]. It measures the ratio between the step length (we use step

height because they are walking in place) and height of the person. The relative step height is an

important feature to consider as it normalizes the step height by the person’s height, hence

eliminating differences in step heights due to variations in height across people (e.g., children and

adults).

Walk ratio (m/Steps/Minute). This is a spatial feature. It is an index used to characterize a

person’s walking pattern, and is measured as the ratio between the step length (we use step

height) and the cadence (rate at which a person walks) [112, 118]. This feature is relevant to
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dynamic motions, as previous research notes that it reflects participants’ balance and coordination

when performing a motion [8, 40].

Step time (s). This is a temporal feature which defines the time duration of a step [128]. It

can further be defined as the time it takes a foot to complete one step. It is measured as the

duration from when the foot leaves the ground to the time when the foot touches the ground again

in completion of a step.

Cycle time (s). This is a temporal feature and is also known as stride time. The cycle time

can be defined as the time it takes a foot to complete one cycle (two steps). It can be measured as

the time between two consecutive steps of the same foot along the horizontal (we use vertical)

trajectory [28].

Cycle frequency (1/s). This is a temporal feature and is also known as stride frequency. It

is defined as the number of cycles per unit time and can be computed as the inverse of the cycle

time [27, 28, 85]. Prior research shows that participants’ preferred cycle frequency optimizes

energy cost [85].

Step Speed (m/s). This is a temporal feature, and is defined as the ratio between the step

length (we use step height) and the step time [128]. It defines how fast a step is completed and

can help in understanding the pace of a motion.

Cadence (steps/min). This is a temporal feature and is defined as the rate at which a person

walks. It is measured as the number of steps taken per minute [25, 39, 85, 91], and reflects the

level of energy being exerted.

5.2.3 Analysis of Motions

We used walking and running motions from the Kinder-Gator dataset [3], namely: “Walk in

place” (walk), “Walk in place as fast as you can” (walk fast), “Run in place” (run), and “Run in

place as fast as you can” (run fast) for the analysis. Recall that this dataset includes the motions of

10 adults and 10 children. To compute the gait features for each person-motion pair, we depend

on knowledge of the stance phase (when the foot is on the ground [25]) and swing phase (when

the foot is away from the ground [25]). Hence, we needed to identify the frames of each motion
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Figure 5-5. Formulas for the nine gait features extracted from the data

that corresponded to the step boundaries. We manually extracted these frames from the

point-light display videos using a video annotation toolkit called EASEL [139]. Two researchers

annotated subsets of the point-light display videos of the Kinect data for all of the motions. To

ensure balanced labeling, the videos were counterbalanced between each annotator by age group

(child, adult) and motion. Also, for similar motions (run & run fast, walk & walk fast), the same

annotator annotated the same participant for both motions. For each video to be annotated, we

created three tracks in EASEL. Frames for the start (foot is on the ground), peak (foot is at its

maximum position), and end (foot is returned to the ground) were recorded on the first, second,

and third track respectively. The frames start-peak-end are the frames within a step. Previous

research [39] has suggested that the analysis of gait can be done with either the foot, knee, hip, or

pelvis joint, so we used the left foot joint from the Kinect skeleton tracking data in our analysis.

Once all the frames had been annotated, we exported the annotation session, which creates an

output CSV file with all the frames and the corresponding tracks recorded. We used this file for

feature computation based on the start-peak-end frames.

We automated the feature computation process by extracting the corresponding foot

positions and time stamps from the data for the frames we had manually extracted. The foot

positions and time stamps were used to compute the gait features. For features involving
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computations per step or cycle, we averaged the values over the total number of steps or cycles in

that motion. Therefore, each participant has one data point per motion for each gait feature. A

two-way repeated measures ANOVA was used to analyze the main effect of age group and motion

type and the interaction effect between them. Whenever we found no interaction effect between

age group and motion, we recomputed the two-way repeated measures ANOVA without the

interaction effect in the model, and report that. For features where we found a significant effect of

motion, we conducted a Tukey post-hoc test to identify motion pairs that are significantly

different. We present results for all of the gait features we considered in our study. All means and

standard deviations for features in the analysis can be found in Table 5-2, and they are expressed

in units commonly used in the analysis of gait [11].

5.2.4 Results–Spatial Features

Distance-based features generally showed no significant effect of age group; hence, we

conclude that they cannot be used to distinguish adult and child motion. However, these features

show a significant effect of motion type, which serves to validate our approach of using features

from the analysis of gait, despite the differences in motion structure (i.e., in-place motions versus

moving along a distance).

Step width. Recall that the width of a step is computed as the horizontal distance between

both feet during a step. A two-way repeated measures ANOVA on step width with a

between-subjects factor of age group (child, adult), and a within-subjects factor of motion (walk,

walk fast, run, run fast) found no significant effect of age group (F1,18 = 12.15, n.s.). The lateral

placement of the feet for adults is roughly the same as that for children. This similarity may be

because both adults and children have less control over the horizontal distance between their feet

since in-place motions involve vertical movements. However, we found a significant main effect

of motion (F3,57 = 50.47, p < 0.0001). Post-hoc tests only identified a difference between walk

and run fast (p < 0.001). People have wider step widths when running fast than when walking

(see Table 5-2), irrespective of the age group. Bauby & Kuo [11] asserted that wider steps are an
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Table 5-2. Mean (SD) of Gait Features by Age Group and Gestures. (*) denotes significant effect
at p < 0.05

Age Group Motions
Gait
Feature

Child Adult Sig. Walk Walk
Fast

Run Run
Fast

Sig.

Step
Width
(m)

0.16
(0.04)

0.17
(0.06)

0.14
(0.05)

0.16
(0.05)

0.16
(0.05)

0.18
(0.04)

*

Step
Height
(m)

0.10
(0.06)

0.10
(0.10)

0.10
(0.09)

0.08
(0.08)

0.09
(0.08)

0.13
(0.09)

*

Relative
Step
Height

0.09
(0.05)

0.06
(0.06)

0.07
(0.07)

0.06
(0.06)

0.07
(0.05)

0.10
(0.06)

*

Walk
Ratio
(m/steps/min)

0.00063
(0.00078)

0.00070
(0.00061)

0.0010
(0.0010)

0.00051
(0.00057)

0.00048
(0.00044)

0.00061
(0.00051)

*

Step
Time
(s)

0.33
(0.11)

0.43
(0.15)

* 0.53
(0.14)

0.37
(0.12)

0.32
(0.08)

0.29
(0.05)

*

Cycle
Time
(s)

1.05
(0.47)

1.26
(0.49)

* 1.84
(0.30)

1.05
(0.34)

0.97
(0.25)

0.78
(0.14)

*

Cycle
Fre-
quency
(1/s)

1.15
(0.44)

0.90
(0.32)

* 0.56
(0.09)

1.07
(0.37)

1.14
(0.35)

1.34
(0.25)

*

Step
Speed
(m/s)

0.32
(0.17)

0.25
(0.27)

0.17
(0.14)

0.24
(0.20)

0.28
(0.20)

0.44
(0.27)

*

Cadence
(steps/min)

203
(79)

166
(61)

* 99 (16) 193
(66)

203
(56)

243
(48)

*
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A) B)

C) D)

Figure 5-6. Effect of Motions and Age Group on selected Gait Features. Error bars indicate 95%
confidence interval. A) Step Time. B) Cycle Time. C) Cycle Frequency. D) Cadence

advantage in stability, thus, participants widen their steps when running fast compared to walking

to improve coordination. No difference in step width was found between other pairs of motions.

Step height. The height of a step is computed as the vertical distance between when the

foot is on the ground, and when the foot is at its maximum position (peak). We focused on the left

foot step heights because we annotated the left foot joints. We computed the ground for each step

as the minimum between the (start) and (end) position. A two-way repeated measures ANOVA on

step height with a between-subjects factor of age group (child, adult), and a within-subjects factor

of motion (walk, walk fast, run, run fast) found no significant effect of age group (F1,18 = 0.002,

n.s.). Our analysis found that the average step height for children and adults is the same (see

Table 5-2). This finding is surprising given the typical difference in height between children and

adults. The range helps to illuminate what is really happening. The range of step heights for
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children was (min: 0.01m, max: 0.25m, med: 0.11m), and adults (min: 0.008m, max: 0.40m,

med: 0.06m): thus, adults can raise their feet higher than children but children tend to raise them

proportionally higher on average. We also found a significant effect of motion (F3,57 = 5.03, p <

0.0001). Post-hoc tests showed the following motion pairs differed: run/run fast (p < 0.05).

Participants have higher step heights when running fast compared to the other motions (see Table

5-1): this confirms their exertion level was higher when running fast during our study.

Relative step height. The relative step height is computed as the ratio of the step height to

the height of the person performing the motion. We estimated the height of a participant using the

difference between the head and the foot along the vertical dimension (y axis). A two-way

repeated measures ANOVA on relative step height with a between-subjects factor of age group

(child, adult), and a within-subjects factor of motion (walk, walk fast, run, run fast) found no

significant effect of age group (F1,18 = 1.51, n.s.). The large variance in the relative step height in

children and adults may be the reason why we found no significant difference (Table 5-2).

However, adults generally have a lower average relative step height compared to children. This

finding is expected since their average step heights were the same, but adults are taller than

children. We also found a significant effect of motion (F3,57 = 5.03, p < 0.05). Post-hoc tests

showed that the following motion pairs differed: run/run fast (p < 0.05). Like step height,

children and adults have a higher relative step height when running fast compared to just running

(see Table 5-1).

Walk ratio. The walk ratio, a measure of balance and coordination, is computed as the ratio

of the step height and the cadence (a temporal feature). A two-way repeated measures ANOVA on

walk ratio with a between-subjects factor of age group (child, adult), and a within-subjects factor

of motion (walk, walk fast, run, run fast) found no significant effect of age group (F1,18 = 12.15,

n.s.). The average walk ratio for children and adults can be found in Table 5-2. The similarity in

walk ratio between children and adults may be because the walking pattern is influenced by how

high participants raised their foot during the motion, and there was no significant difference in the

average step height between children and adults. The standard walk ratio for adults in the gait
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literature is 0.0065 m/steps/min [112, 118]. However, we found a lower walk ratio for adults (M =

0.001 m/steps/min, SD = 0.001). The lower walk ratio is because the maximum step height that

has been achieved in our study while moving in place is much less than the average step lengths

noted in the literature (M = 0.68m) [118]. Children also had an average walk ratio of 0.001

m/steps/min (SD = 0.0009). We also found a significant effect of motion (F3,57 = 50.47, p <

0.0001). Post-hoc tests showed that the following motion pairs differed: walk/walk fast (p <

0.001). Participant’s walk ratios were higher when walking in place compared to any of the other

motions (see Table 5-2). This result follows from what we might expect: participants have more

coordination and balance in the (slowest) walking motion when performing the motion in place.

5.2.5 Results–Temporal Features

We discuss the computation of time-based gait features, and present our findings using the

same statistical analysis we used for the spatial features. Time-based features (except step speed)

show significant effects by both age group and motion. Thus, these are promising features to use

to differentiate between child and adult motion.

Step time (Figure 5-6A). The time for each step during an motion is computed as the

difference between the time stamp for the end frame (when the foot is back on the ground) and

the timestamp for the start frame (when the foot first leaves the ground). A two-way repeated

measures ANOVA on step time with a between-subjects factor of age group (child, adult), and a

within-subjects factor of motion (walk, walk fast, run, run fast) found a significant main effect of

age group (F1,18 = 12.15, p < 0.05). Children move faster compared to adults (see Table 5-2).

During our data collection, we observed that, given the same prompts, children were more

energetic and enthusiastic when performing the motions compared to adults. We also found a

significant effect of motion (F3,54 = 55.86, p < 0.0001). Post-hoc tests showed that the following

motion pairs differed: walk/walk fast (p < 0.001), walk fast/run (p < 0.05). As expected, people

have a faster step time when running, and become slower when walking fast, and walking,

respectively (Table 5-2), validating our prompts. We also found a significant interaction effect

(F3,54 = 4.74, p < 0.05). Children have a faster step time than adults when performing all the
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motions except running fast (see Figure 5-6A). Since adults were less enthusiastic than children,

the prompt “run as fast as you can” could have encouraged adults to finally “pick up the pace”

and exert themselves more than they did in the previous motions.

Cycle time (Figure 5-6B). The time for a cycle is computed as the time it takes to complete

two consecutive steps of the same foot. A two-way repeated measures ANOVA on cycle time

with a between-subjects factor of age group (child, adult), and a within-subjects factor of motion

(walk, walk fast, run, run fast) found a significant main effect of age group (F1,18 = 7.61, p <

0.05). Like step time, children complete cycles with a shorter time duration compared to adults

(Table 5-2). We also found a significant effect of motion (F3,57 = 102.13, p < 0.0001). Post-hoc

tests showed that the following motion pairs differed: walk/walk fast (p < 0.001), run/run fast (p

< 0.05). Intuitively, people exhibit the fastest cycle time when running fast, and cycle time is

slowest for walking (Table 5-2). Compared to step time, participants complete individual steps

faster when running than when walking fast, but the time to complete successive steps (in this

case two steps of the same foot) is roughly the same in both motions. Also, unlike step time, we

found no significant interaction between age group and motion. This could be because cycle time

includes motion of both feet, whereas our calculation of step time includes only the left foot.

Previous research [113] has shown people exhibit a strength imbalance on their non-dominant

side, which could lead to higher variability in the motion.

Cycle f (Figure 5-6C). The cycle frequency is computed as the inverse of the cycle time

(1/cycle time). A two-way repeated measures ANOVA on cycle frequency with a

between-subjects factor of age group (child, adult), and a within-subjects factor of motion (walk,

walk fast, run, run fast) found a significant main effect of age group (F1,18 = 10.53, p < 0.05).

Children have a higher cycle frequency compared to adults (Table 5-2). We also found a

significant effect of motion (F3,54 = 46.53, p < 0.0001). Like cycle time, post-hoc tests showed

that the following motion pairs differed: walk/walk fast (p < 0.05), run/run fast (p < 0.05).

Unlike cycle time, we found a significant interaction effect (F3,54 = 3.55, p < 0.05) between age

group and motion. Children have a higher cycle frequency than adults when performing all

80



motions, except walking in place (see Fig. 5-6c). Previous research has found lower cycle

frequency is correlated to a lower physical energy cost [85], and young children are not as

experienced at optimizing this cost as adults.

Step speed. The speed of a step is computed as the ratio of step height to step time. A

two-way repeated measures ANOVA on step speed with a between-subjects factor of age group

(child, adult) and a within-subjects factor of motion (walk, walk fast, run, run fast) found no

significant main effect of age group (F1,18 = 0.66, n.s.), unlike all the other temporal features. We

believe age group is not significant because the step speed is highly dependent on the step height,

a distance-based feature (r = 0.90, p < 0.0001). However, we did find a significant effect of

motion (F3,57 = 19.06, p < 0.0001). Post-hoc tests showed that the following motion pairs

differed: run/run fast (p < 0.001). Step speed, being highly dependent upon step height, shows

the same pattern by motion with respect to motion intensity.

Cadence (Figure 5-6D). The cadence is computed as the ratio of the total number of steps

taken during a motion to the total time duration of that motion. A two-way repeated measures

ANOVA on cadence with a between-subjects factor of age group (child, adult) and a

within-subjects factor of motion (walk, walk fast, run, run fast) found a significant main effect of

age group (F1,18= 5.86, p < 0.05). The number of steps taken per minute for children is higher

compared to adults (Table 5-2). This higher number is expected because we know from step time

that children move faster than adults, and are more enthusiastic. Thus, it follows that children will

complete more steps than adults in a similar time. Our analysis also show that adults have a lower

cadence (M = 95 steps/min, SD = 19) when walking in place in our study. This value corresponds

to a medium walking cadence (80 – 99 steps/min) asserted by Tudor-Locke et al. [130], but

differs from the average cadence of 120 steps/min proposed by Gage et al. [39] for adults. This

difference may be because adults did not walk long enough (<20 steps) in our study and may not

have settled into a cadence. The finding could also be because participants in our study were

walking in place compared to walking forward along a distance. Similarly, children in our study

had an average cadence of (M = 103 steps/min, SD = 13) which is lower than the average cadence
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of 138 steps/min in Dusing and Thorpe’s study, for children ages 5 to 10 [35]. However, Barreira

et al. [10] found that children spent more time in their open walking study walking at cadences of

100–119 steps/min compared to cadences of 120+ steps/min. We also found a significant effect of

motion (F3,54 = 55.75, p < 0.001). Post-hoc tests showed that the following motion pairs differed:

walk/walk fast (p < 0.01), run/run fast (p < 0.05). Cadence exhibits a similar pattern by motion

as cycle frequency and cycle time: we discuss the relationship between these features in the next

section. We also found a significant interaction effect (F3,54 = 2.99, p < 0.05). Children have a

higher cadence than adults when performing all motions except walking (see Figure 5-6D). Like

cycle frequency, children display the same pattern of cadence by motion, in which they are

expending higher energy and exhibiting lower coordination than adults.

5.2.6 Discussion

Our results showed significant differences in temporal features such as step time, cycle

time, cycle frequency, and cadence. Children have a faster step time and cycle time and a higher

cadence, but a lower cycle frequency compared to adults. Hence, these features could be

promising to use to differentiate between child and adult motion. We found no significant

differences between child and adult motion for spatial features, showing that these features may

help differentiate children’s and adults’ walking and running motions. Hence, children’s motions

are quantifiably different than adults’ in ways that might affect recognition (e.g., speed and

movement time), which may affect the recognition performance of children’s motions, further

emphasizing the need to tailor motion recognizers to children’s motions. For example, the

coordination of a child’s movement depends on the motion being performed, as in our study the

children had higher coordination evident during walking in place motions versus running fast

motions. Recognizers will need higher tolerance for variance in the motion to be able to

recognize less coordinated motion from children.

In addition to recognition, our findings also have implications for the design of whole-body

motion applications for children. Our post-hoc analysis found no significant difference between

walk fast and run in all the features except step time, and conversely, we found a significant
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difference between run and run fast in all the features except step time. Furthermore, our results

for cycle frequency and cadence show that children exhibit more energy than adults when

performing the motions in our study. Taken together, we can assert that children exhibit higher

exertions than adults for the same motion prompts. This finding suggests that designers of

whole-body motion applications should tailor interaction prompts given to users based on the age

group and desired level of exertion. For example, for higher levels of exertion, designers need

only prompt children to “Run”, but must prompt adults to “Run fast.”

5.3 Summary

Findings from the studies presented in this chapter showed that the motion qualities that

distinguish child motion from adult motion can be quantified. Although our first study showed

that children are more inconsistent in how they perform motions compared to adults, the study did

not provide any quantifiable features that can help inform a deeper understanding of the reasons

why children are inconsistent in how they perform motions compared to adults. Even though our

second study presents quantifiable features from the gait literature that differentiate child motion

from adult motion, the features are not generalizable. Gait features are optimized for analyzing

gait and rely on the periodicity of the motion, which makes them unsuitable for analyzing motions

that are not periodic, such as exercise motions (e.g., “a Jump” or “Kick”). In the next chapter, we

focus on identifying a set of features that can be applied to a broader set of motions. Using these

features, we aim to quantify the differences between children’s and adults’ motions to establish a

set of features that characterize children’s natural motion qualities. Through this understanding,

we aim to propose design guidelines for tailoring motion recognition systems to children’s motion

qualities to enable accurate recognition of their motions as well as propose guidelines for the

design of whole-body gesture sets and whole-body gesture applications for children.

83



CHAPTER 6
CHARACTERIZING CHILDREN’S NATURAL MOTION QUALITIES

So far, we have established that children’s motions differ from adults’ motions. In this

chapter, we continue our goal of understanding how children move differently from adults (i.e.,

their natural motion qualities). We do this by identifying a set of features that quantitatively

describe motions and evaluate them on a subset of children’s and adults’ motion to reveal

differences. We also qualitatively analyzed children’s motions to provide support for our

quantitative results.

6.1 Quantifying Differences Between Child and Adult Motion

To identify features that are applicable to motions regardless of the motion type, we propose

a set of articulation features that can quantitatively describe motions. Specifically, we use

human-readable features proposed by Vatavu [132] for characterizing human motion

performance, which we refer to as “global-level features”. However, because global-level features

focus on the whole-body, they will not be as helpful characterizing properties of individual joints

that make up the motion. Hence, we also propose a new set of features that characterize geometric

properties such as length, shape, and curvature, of motion paths of a joint, which we termed

“joint-level features”.

6.1.1 Global-Level Features

Vatavu [132] identified 17 features for characterizing human motion performance

comprising spatial features (dependent on distance), kinematic features (dependent on time) and

appearance features (dependent on the composition of postures). We refer to these features as

“global-level features” because they describe motions globally, based on the overall posture or

pose of the body (i.e., the positioning of the body at a specific time instance as defined by a set of

joints with positions in 3D space, see Figure 3-1B in Chapter 1).

6.1.1.1 Spatial features

These features capture motion qualities related to the area, volume, and amplitude of

gesture movement performed by the whole-body or body parts [132]. The main features included

in this category are “gesture volume”, “gesture area”, and “quantity of movement” (i.e., how

much movement the user performs), “difference of movement” and “ratio of movement”. Vatavu
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[132] also derived several features from these main features, which the author notes depends on

what the research is aiming to investigate. For example, Vatavu [132] derived the “quantity of

hands movement”, “difference of hands movement”, and “ratio of hands movement from the

quantity of movement, difference of movement, and ratio of movement respectively. The author

notes that these features are of interest to a researcher investigating the relationship between the

dominant and non-dominant hand during movement. Vatavu [132] also derived the “ratio of

hands to legs movement” and “ratio of hands to body movement” for researchers who are

interested in the relationship between the hands and legs and hands and body, respectively.

Because some motions in the Kinder-Gator dataset [3] are heavily dependent on the upper body

(e.g., “Raise your hand”) while others are heavily dependent on the lower body (e.g., “Bend your

knee”), we are more interested in how the upper body moves in relation to the lower body rather

than how one limb (e.g., hands) moves in relation to another limb (e.g., legs). Therefore, in

addition to the main features above, we derived the following features: “quantity of upper body

movement” and “quantity of lower body movement” to capture the relationship between the upper

and lower body during movement. We describe the main features and derived features below:

Gesture volume (GV). Vatavu defines this feature as the volume of the 3–D space in which

the motion is performed [132]. It is computed as the product of the difference between the

maximum and minimum positions of the body in the x (length), y (height), and z (depth)

dimensions:

GV = ∏
δ∈{x,y,z}

(maxi, j{δ i
j}−mini, j{δ i

j}) (6-1)

Where δ represents each of the dimensions along which the motion is tracked (i.e., x, y, z), i

enumerates all body poses of the motion, and j enumerates all 20 joints tracked by the Kinect.

Gesture area (GA). Vatavu defines this feature as the area of the 2–D space in front of the

motion sensor where the motion is performed [132]. It is computed as the product of the

difference between the maximum and minimum positions of the body in the x (length) and y
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(height) dimensions only:

GV = ∏
δ∈{x,y}

(maxi, j{δ i
j}−mini, j{δ i

j}) (6-2)

Where δ represents each of the x and y dimensions, i enumerates all body poses of the motion,

and j enumerates all 20 joints tracked by the Kinect.

Quantity of movement (QM). Vatavu defines this feature as the total amount of movement

performed by the user [132]. It is computed as the cumulative pairwise Euclidean distance

between corresponding joints of time–consecutive frames of the data:

QM =
1
λ

n

∑
i=2

J

∑
j=1
||pi

j− pi−1
j || (6-3)

Where ||pi
j− pi−1

j || is the Euclidean distance between a joint j of a body pose pi in the current

time frame i and the same joint of a body pose pi−1 in the previous time frame i−1 defined as

two 3D points [132]. λ is a normalization factor such that if λ =1, then the result is the

cumulative quantity of movement and if λ =number of tracked joints, then the result is the

average quantity of movement per joint.

The generalized version of this feature, also known as the “Generalized Quantity of

Movement”, weights the Euclidean distance so that certain joints can be emphasized over others

[132]:

QM =
1
λ

n

∑
i=2

J

∑
j=1

(w j).||pi
j− pi−1

j || (6-4)

Where w j is any value representing the weight of a joint j. From this feature, we derived the

following two features:

Quantity of upper body movement (QMU ). This feature quantifies the amount of

movement in the upper body. We calculated this feature using the same formula as the

generalized quantity of movement with w j =1 for joints in the upper body, namely: head,

shoulder center, left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left

hand, right hand, and w j =0 for joints in the lower body.
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Quantity of lower body movement (QML). This feature quantifies the amount of

movement in the lower body. Similar to the upper body movement feature, we calculated this

feature using the same formula as the generalized quantity of movement with w j =1 for joints in

the lower body, namely: left hip, right hip, left knee, right knee, left ankle, right ankle, left foot,

and right foot, and w j =0 for joints in the upper body.

Difference of movement (DM). Vatavu defines this feature as the difference between the

quantity of movement of two different body parts [132]:

DM = QM(first body part)−QM(second body part) (6-5)

As mentioned earlier, our main interests are in the upper and lower body movement, so I am

deriving the following feature:

Difference of body movement (Dbody). We calculated this feature as the difference

between the quantity of movement in the upper body and lower body:

Dbody = QMU −QML (6-6)

Ratio of movement (RM). Vatavu defines this feature as the ratio of the quantity of

movement in one body part with respect to the quantity of movement in another body part [132]:

RM =
QM(first body part)

QM(second body part)
(6-7)

Ratio of body movement (Rbody). We derived this feature from RM. We calculated this

feature as the ratio of the quantity of movement in the upper body to the quantity of movement in

the lower body:

RM =
QMU

QML
(6-8)

6.1.1.2 Kinematic features

This set of Vatavu’s features capture motion qualities related to the time it takes to perform

a motion and the speed at which the motion is performed [132]. Kinematic features only consider

the duration when the motion of interest is performed. Therefore, we exclude periods when
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addition motions that are not of interest are being performed. For example, during the collection

of the Kinder-Gator dataset [3], participants were first required to complete a T-pose before

performing the actual motion. Hence, for the computation of the Kinematic features, the T-pose

will be excluded from the motion. Vatavu [132] identified two kinematic features, namely

“Performance Time (T)” and “Average Gesture Speed (S)”:

Performance time. Vatavu defines this feature as the time it takes the user to perform the

motion [132]. It is computed as the difference between when the user starts the motion and when

the user ends the motion, reported in seconds:

T = TN−T1 (6-9)

Where TN is the timestamp of the last frame and T1 is the timestamp of the first frame. Recall that

a frame is the position of all joints tracked by the motion sensor in 3D space at a given time

instance.

Average gesture speed (S). Vatavu defines this feature as a measure of how fast or slow the

user is when performing the motion [132]. It is computed as the ratio of the quantity of movement

(a spatial feature) and the performance time:

S =
QM

T
(6-10)

6.1.1.3 Appearance features

This set of Vatavu’s features characterize how motions decompose into simple units of

movements [132]. They include “Body Posture Variation (BPV)”, “Body Posture Diffusion

(BPD)”, “Body Posture Density (BPρ)”, and “Body Posture Rate (BPR)”.

Body posture variation (BPV). Vatavu defines this feature as the average deviation of a

body posture from the centroid posture of the motion [132]. A posture, also known as a pose or a

frame, is the position of all the joints tracked by the motion sensor in 3D space at a given time
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instance. The centroid pose is calculated as the average position of each in 3D space:

BPV =
1
n

n

∑
i=1

J

∑
j=1
||pi

j− p j|| (6-11)

Where ||pi
j− p j|| is the Euclidean distance between each pose of the motion and n is the number

of poses.

Body posture diffusion (BPD). Vatavu defines this feature as the maximum difference

between the body poses that make up the motion [132]. It is computed by finding the difference

between each pose and all corresponding poses and selecting the maximum difference:

BPD = max1≤<k≤n

{
J

∑
j=1
||pi

j− pk
j||

}
(6-12)

Where pi
j and pk

j are corresponding joints of pose pi at time frame i and pose pk at time frame k

respectively.

Body posture density (BPρ). Vatavu defines this feature as the variation of the body pose

over the 3D space in which the motion is performed [132]. It is computed as the ratio of the Body

Pose Variation to the Gesture Volume (a spatial feature):

BPρ =
BPV
GV

(6-13)

Body posture rate (BPR). Vatavu defines this feature as the variation of the body pose over

the time it took to produce the motion [132]. It is computed as the ratio of the Body Pose

Variation to the Performance Time (a kinematic feature):

BPR =
BPV

T
(6-14)

In total, our work presents 13 global-level features from prior work [132] that quantitatively

describes users’ motion performance and which we use to analyze child and adult motions,

namely: Gesture Volume, Gesture Area, Quantity of Movement, Quantity of Upper Body

Movement, Quantity of Lower Body Movement, Difference of Movement, Ratio of Movement,

Performance Time, Average Gesture Speed, Body Pose Variation, Body Pose Diffusion, Body
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Figure 6-1. Gesture Volume computed on postures of a Raise your hand motion

Pose Density, and Body Pose Rate. Fig. 6-1 shows an example of a global-level feature

computation on the postures of a motion.

6.1.2 Joint-Level Features

The limitation of the global-level features described above is that they focus on the position

of the whole-body at a given point in time, so these features will not characterize properties of

individual joints that are critical to performing motions. For example, consider a user performing

the “Jump” motion. Global-level features will be useful in ensuring that the user is performing the

“Jump” motion as opposed to a different motion (e.g., “Do a forward lunge” motion). However,

global-level features might not be as helpful in understanding whether two users moved

individual joints responsible for making movements, such as limb movements [92], differently as

they perform the motion. For example, users are expected to lift both feet off the ground to

perform the “Jump” motion. Depending on how users control their feet, there could be variations

in how users lift their feet off the ground, which could result in differences in how these users
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perform the “Jump” motion. In this example, global-level features may not be as helpful in

understanding whether two users lifted their feet differently when performing the “Jump” motion.

Therefore, global-level features will not capture motion qualities that relate to subtleties of the

joint articulation path (i.e., as joint-level features can); the joint articulation path is defined by a

set of consecutive 3D points the joint moves through along the time-domain. These subtleties can

inform an understanding of the variations in how different users move their joints during motions.

For this reason, in addition to the motions proposed by Vatavu [132], we identified a set of

joint-level features that quantify geometric properties of the joint articulation paths necessary for

performing the motions, such as length, shape, and curvature. We referred to these features as

“geometric features”. These features were inspired by the relative accuracy features from Vatavu

et al. [135], features for tracking mouse paths [56], and features from Laban Movement Analysis

[72]. To identify the joints necessary to perform motions, we use our filterJoint method discussed

in Chapter 5, which uses standard deviation and K-means clustering [53] iteratively to select the

set of joints that are actively moving during a motion. In this section, we describe a method for

identifying geometric features and the geometric features that emerged from this method.

6.1.2.1 Joint task axis

To identify features that can describe geometric properties of joint articulation paths, we

rely on a method from a closely related field of research, 2D stroke gesture recognition. Vatavu et

al. [135] proposed a method that can be used to measure the inconsistency between stroke gesture

articulation paths, called the “gesture task axis”. The authors defined the gesture task axis as a

representative way to articulate a stroke gesture [135] and proposed three types of gesture task

axis:

1. Geometric gesture task axis, which is defined by the designer using geometric primitives
such as lines and curves [135].

2. Average gesture task axis, which the authors define as the “average shape of a set of
user-captured gesture samples” [135].

3. Template gesture task axis, which the authors define as a “canonical template form supplied
to a recognizer to which articulated gestures will be compared in a template-based
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matching approach” [135]. Given a dataset of stroke gestures (e.g., for the letter A), the
template task axis is the gesture with the least distance to a representative gesture,
computed as the average of all the gestures in the dataset [135].

Vatavu et al. [134] further noted that the stroke gesture paths need to be resampled to the same

number of points to enable point-to-point comparison and translated so that the centroid is at the

origin, before computing a 2D stroke gesture task axis,.

Similarly, we defined a “joint task axis” as a representative way to move a joint. Unlike

stroke gestures in which there is only one articulation path, defined by the finger’s movement, and

one task axis, motions have multiple articulation paths, defined by all the joints tracked by the

motion sensor. Therefore, a motion will have multiple joint task axes, one for each joint necessary

to perform the motion. To define the joint task axis, we used the template gesture task axis

method. The geometric gesture task axis requires designers to defined the representative path.

However, unlike stroke gestures wherein the lines and curves that make up the gesture (e.g., the

letter “A”) are already defined and well-known by designers, the lines and curves that make up a

joint’s articulation path are not as well-defined. Therefore, it will be difficult for designers to

intuit the expected path of joint (e.g., the knee joint) in 3D space as a user moves that joint, which

means that the joint path resulting from a geometric gesture tasks axis may not be representative

of how that joint moves. Similarly, we do not use the average gesture task axis method because

the average of all the joint paths of a joint does not guarantee a path that a user will actually move

that joint through during a motion. Consequently, the combination of the average joint paths for

all joints may not maintain the integrity of the motion (e.g., relative positioning between body

parts). Therefore, results from features that depend on the geometric gesture task axis or average

gesture task axis could be inaccurate in quantitatively describing a user’s motion.

To apply the template method, we use a leave-one-out approach inspired by the

Leave-One-Out-Cross-Validation approach (LOOCV) used in recognition experiments [4]. In

LOOCV, motions from one participant are selected for testing (i.e., the candidate user) while

motions from all other participants are used for training. This process is repeated until all

participants have been selected once for testing. Similarly, given a set of motions (e.g., for the
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motion Raise your hand), one user is selected as the candidate user. For each of their joints that is

actively moving as selected by the filterJoint method [5], the template joint task axis for that joint

will include every other user’s corresponding joint articulation path in the motion set. For

example, given three users (c1, c2, c3) wherein c1 is the candidate user who actively moves their

right hand when raising their hand, then the task axis for the right hand joint will include the

articulation paths of the right hand joint for users c2 and c3. The process is repeated until every

user in the set has been selected as the candidate user once and all the joint task axes for all the

joints that each candidate user is actively moving has been generated. We formalize the joint task

axis as follows:

a. Given a set of motions of a specific type
M = {m1,m2,m3, ...mU |U = number of users that performed T}, where each motion in M
is represented by J joints that are actively moving as selected by the filterJoint method.
Then for a specific candidate user C ∈U with motion mi in M with q joints that are actively
moving:

JC =
{

j1
C, j2

C, j3
C, ... j

q
C

}
(6-15)

Where each joint jk
C is defined by a series of n 3D points

p = {p1, p2, p3, ..., pn|pi = (xiyi,zi)} (6-16)

b. The joint task axis Tσ for jk
C will include the corresponding joint articulation paths of every

other user in U :
T

jkC
σ =

{
jk
1, jk

2, jk
3, .. j

k
U−1| jk

i 6= jk
C

}
(6-17)

c. Then the joint task axis Tσ for JC is: T

Tσ =

{
T j1C

σ ,T j2C
σ ,T

j3C
σ , ...,T

jqC
σ

}
(6-18)

6.1.2.2 Geometric features

Next, we define a set of joint-level features that characterize the deviation of the articulation

path of a joint from the joint task axis with respect to properties, such as length, shape, and

curvature. These features were inspired by the relative accuracy features from Vatavu et al. [135],

features for tracking mouse paths [56], and features from Laban Movement Analysis [72, 155].

Eight of the eleven features we identified rely on a concept of “error”, which does not imply that
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the user moved the joint in the wrong way, but rather measures inconsistency with respect to the

task axis [135]. Each feature requires a comparison between the joint path of the candidate user

and every other users’ corresponding joint path (i.e., the articulation paths in the joint task axis).

Then, the average of the feature computation across all the comparisons and all the joints that the

candidate user is actively moving is used to compute the feature for a given candidate user’s

motion instance. For example, given three users (c1, c2, c3) where c1 is the candidate user who

actively raises their right hand and right elbow when raising their hand. To compute joint-level

feature f , we compare c1’s right hand path to the right hand path of c2 and c1’s right hand path to

the right hand path of c3 and compute the average (u1). We do the same for the right elbow joint

to compute the average (u2). Then, we take the average of u1 and u2 as the value of feature f .

To ensure accurate comparison of a joint articulation path of a candidate user and a joint in

the joint task axis belonging to a representative user, we apply the following methods to address

the four ways in which motions can be performed that will impact the distance between two joint

articulation paths:

a. Same joint (i.e., left vs right) and same direction, compare as-is. For example, both
candidate user and representative user swipe their right hand from left to right.

b. Same joint but different directions (e.g., swiping right to left vs. swiping left to right), FLIP
the joint articulation path 180o along the x-axis to change direction and then compare joint
articulation path and joint task axis. For example, both candidate user and representative
user swipe their right hand, but the candidate user swipes from right to left while the
representative user swipes from left to right.

c. Different joints but same direction, REPLACE articulation path of the joint task axis with
the articulation path of the joint of its opposite limb (i.e., replace left joints with right joints
and vice-versa, leave middle joints as-is) then compare. For example, both candidate and
representative user swipe from right to left, but the candidate user swipes with their right
hand while the representative user swipes with their left hand.

d. Different limbs and different directions, FLIP the joint articulation path, REPLACE
articulation path of joint task axis, then compare. For example, the candidate user swipes
with their left hand from right to left while the representative user swipes with their right
hand from left to right.
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For a given candidate joint articulation path and an articulation path in the set of articulation paths

in the corresponding joint task axis, the comparison with the least Euclidean distance is used to

compute all the joint-level features for the pair of joint articulation paths being compared.

Shape error. This feature measures the average absolute deviation of the shape of a user’s

joint path in a motion instance from the shape of the same joint path in the joint task axis. It is

measured as the average Euclidean distance between each 3D point in the given joint and each 3D

point in the joint task axis. Given a motion instance for candidate user C,an actively moving joint

jk
C, and a set of joint articulation paths for the corresponding joint task axis T

jkC
σ , then the shape

error is computed as: [5].

SHE(C) =
1
q

q

∑
k=1

SHE( jk
C)

SHE( jk
C) =

1
U−1

U−1

∑
u=1

SHE( jk
C, jk

u)∀ jk
i ∈ T

jkC
σ

(6-19)

SHE( jk
C, jk

u) =
1
n

n

∑
i=1

min
(
|| jk

c(i)− jk
u(i)||, || f lip( jk

c(i))− jk
u(i)||

, || f lip( jk
c(i))−mirror( jk

u(i))||, || j
k
c(i)−mirror( jk

u(i))||
)

Where SHE( jk
C, jk

u) is the shape error between two joint articulation paths, SHE( jk
C) is the shape

error over all the joint articulation paths in the joint task axis, and SHE(C) is the shape error over

all the actively moving joints. q is the number of joints that are actively moving for an instance of

the motion from C, and U is the number of users in the dataset. Similar to the 2D stroke gesture

task axis, each joint articulation path is first resampled to the same number of n points and

translated so that the centroid is at the origin to enable point-to-point correspondence.

Shape variability. This feature measures how uniform the shape errors are along a joint

articulation path and is computed as the standard deviation of the distances between each 3D

point in the joint path in a motion instance and each 3D point of a joint path in the joint tasks axis.

Given a motion instance for candidate user C,an actively moving joint jk
c , and a set of joint

articulation paths for the corresponding joint task axis T
jkC

σ , then the shape variability is computed
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as:

SHV (C) =
1
q

q

∑
k=1

SHV ( jk
C)

SHV ( jk
C) =

1
U−1

U−1

∑
u=1

SHV ( jk
c, jk

u)∀ jk
i ∈ T

jkC
σ

SHV ( jk
C, jk

T ) =
1

n−1

√
n

∑
i=1
|| jk

c(i)− jk
u(i)||−SHE( jk

C, jk
u)

(6-20)

Where SHV ( jk
C, jk

u) is the shape error between two joint articulation paths, SHV ( jk
C) is the shape

error over all the joint articulation paths in the joint task axis, and SHV (C) is the shape error over

all the actively moving joints.

Bend error. Vatavu et al. [135] defined this feature as a user’s tendency to bend strokes

during the articulation of a stroke gesture. With respect to motions, we define this feature as a

user’s tendency to bend or curve the articulation paths of their joints when performing the motion.

It is computed as the average of the absolute difference between the turning angle of a user’s joint

path in a motion instance and the turning angle of a joint path in the joint task axis. The turning

angle at a 3D point p is the angle, θ , between p and the previous point (p−1) and p and the next

point (p+1) [135]. Given a motion instance for candidate user C, an actively moving joint jk
C,

and a set of joint articulation paths for the corresponding joint task axis T
jkC

σ , then the bend error is

computed as:

BE(C) =
1
q

q

∑
k=1

BE( jk
C)

BE( jk
C) =

1
U−1

U−1

∑
u=1

BE( jk
C, jk

u)∀T ∈ T
jkC

σ

BE( jk
C, jk

u) =
1
n

n

∑
i=1
|θ k

c(i)−θ
k
u(i)|

(6-21)

Where BE( jk
C, jk

u) is the bend error between two joint articulation paths, BE( jk
C) is the bend error

over all the joint articulation paths in the joint task axis, and BE(C) is the bend error over all the
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actively moving joints and θ k
c(i) and θ k

u(i) are the turning angles computed as:

θp =< (p−1.p, p.p+1) (6-22)

Bend variability. This feature measures the uniformity of the bending errors along a joint

path and is computed as the standard deviation of the differences between the turning angles of a

joint path in a motion instance and the turning angle of a joint path in the joint task axis. Given a

motion instance for candidate user C, an actively moving joint jk
C, and a set of joint articulation

paths for the corresponding joint task axis T
jkC

σ , then the bend variability is computed as:

BV (C) =
1
q

q

∑
k=1

BV ( jk
C)

BV ( jk
C) =

1
U−1

U−1

∑
u=1

BV ( jk
C, jk

u)∀T ∈ T
jkC

σ

BV ( jk
C, jk

u) =
1

n−1

√
n

∑
i=1
|θ k

c(i)−θ k
u(i)|−BE( jk

C, jk
u)

(6-23)

Where BV ( jk
C, jk

u) is the bend error between two joint articulation paths, BV ( jk
C) is the bend error

over all the joint articulation paths in the joint task axis, and BV (C) is the bend error over all the

actively moving joints.

Length error: Vatavu et al. [134] defined this feature as a user’s tendency to stretch gesture

strokes with respect to the task axis. For motions, we defined this feature as a user’s tendency to

stretch their joint articulation paths. It is computed as the absolute difference between the path

lengths of a joint path in a motion instance and a joint path in the joint task axis. Given a motion

instance for candidate user C, an actively moving joint jk
C, and a set of joint articulation paths for

the corresponding joint task axis T
jkC

σ , then the length error is computed as:

LE(C) =
1
q

q

∑
k=1

LE( jk
C)

LE( jk
C) =

1
U−1

U−1

∑
u=1

LE( jk
C, jk

u)∀T ∈ T
jkC

σ

LE( jk
C, jk

u) = |L( jk
C)−L( jk

u)|

(6-24)
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Where LE( jk
C, jk

u) is the length error between two joint articulation paths, LE( jk
C) is the length

error over all the joint articulation paths in the joint task axis, and LE(C) is the length error over

all the actively moving joints and L( jk
C) and L( jk

u) are the path lengths of the joint articulation

paths being compared.

Size error. Vatavu et al. [135] defined this feature as users’ tendency to stretch gesture

strokes with respect to the gesture area size, which is the area of the smallest bounding box that

can encompass the gesture path. Because motions occur in 3D space, we define this feature as

users’ tendency to stretch the articulation paths of joints with respect to joint volume size. It is

computed as the absolute difference between the volume of the smallest bounding box

encompassing the joint path of a motion instance and a joint path in the task axis. Given a motion

instance for candidate user C, an actively moving joint jk
C, and a set of joint articulation paths for

the corresponding joint task axis T
jkC

σ , then the size error is computed as:

SE(C) =
1
q

q

∑
k=1

SE( jk
C)

SE( jk
C) =

1
U−1

U−1

∑
u=1

SE( jk
C, jk

u)∀T ∈ T
jkC

σ

SE( jk
C, jk

u) = |V ( jk
C)−V ( jk

u)|

(6-25)

Where SE( jk
C, jk

u) is the size error between two joint articulation paths, SE( jk
C) is the size error

over all the joint articulation paths in the joint task axis, and SE(C) is the size error over all the

actively moving joints and V ( jk
C) and V ( jk

u) are the volumes of the bounding boxes of the joint

articulation paths.

Efficiency. This feature measures how efficient a path is in achieving its goal [56]. In

mouse tracking, this feature is computed as the ratio of the length of the shortest path (defined as

a straight line) to the length of the curve. With respect to motions, we defined efficiency as the

ratio of the length of a joint path in the joint task axis, which is the ideal path to the length of a

joint path in a motion instance. Given a motion instance for candidate user C, an actively moving

joint jk
C, and a set of joint articulation paths for the corresponding joint task axis T

jkC
σ , then the
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efficiency is computed as:

E(C) =
1
q

q

∑
k=1

E( jk
C)

E( jk
C) =

1
U−1

U−1

∑
u=1

E( jk
C, jk

u)∀T ∈ T
jkC

σ

E( jk
C, jk

u) =
L( jk

u)

L( jk
C)

(6-26)

Where E( jk
C, jk

u) is the efficiency between two joint articulation paths, E( jk
C) is the efficiency over

all the joint articulation paths in the joint task axis, and E(C) is the efficiency over all the actively

moving joints.

Time error: According to Vatavu et al. [135], this feature measures the difference between

the total time it takes to articulate a stroke gesture and the task axis. We computed this feature as

the difference between the total time it takes to articulate a joint path in a motion instance and the

corresponding joint path in a joint task axis. Given a motion instance for candidate user C, an

actively moving joint jk
C, and a set of joint articulation paths for the corresponding joint task axis

T
jkC

σ , then the time error is computed as:

T E(C) =
1
p

p

∑
k=1

T E( jk
C)

T E( jk
C) =

1
U−1

U−1

∑
u=1

T E( jk
C, jk

u)∀T ∈ T
jkC

σ

T E( jk
C, jk

u) = |time(C)− time(u)|

time( jk) = tn− t1

(6-27)

Where T E( jk
C, jk

u) is the time error between two joint articulation paths, T E( jk
C) is the time

error over all the joint articulation paths in the joint task axis, and T E(C) is the time error over all

the actively moving joints and tn and t1 are the timestamps of the last frame and first frame of a

joint path jk respectively. Since all the joints are tracked concurrently, the total time it takes to

move one joint in the motion will be same as the total it takes to move all other joints, which
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means that it is the time it takes the user to perform a motion (i.e., performance time, see section

on global-level features).

Speed error. This feature measures the average difference between the speed of a joint path

in a motion instance and the speed of a joint path in the joint task axis, where speed is the ratio of

the quantity of movement, computed using the path length, to the time it takes to perform the

motion (performance time). Given a motion instance for candidate user C, an actively moving

joint jk
C, and a set of joint articulation paths for the corresponding joint task axis T

jkC
σ , then the

speed error is computed as:

V E(C) =
1
q

q

∑
k=1

V E( jk
C)

V E( jk
C) =

1
U−1

U−1

∑
u=1

V E( jk
C, jk

u)∀T ∈ T
jkC

σ

V E( jk
C, jk

u) =
1
n

n

∑
i=1
|S( jk

C, i)−S( jk
u, i)|

(6-28)

Where V E( jk
C, jk

u) is the speed error between two joint articulation paths, V E( jk
C) is the speed

error over all the joint articulation paths in the joint task axis, and V E(C) is the speed error over

all the actively moving joints and Sk
C(i) - Sk

u(i) are the speeds of the joint articulation paths,

computed as the ratio of the length of the joint path at frame i (also known as arc length) to the

time duration at i. From Laban Movement Analysis [72], the speed of a joint jk at frame i can be

computed as:

V ( j, i) =



arc−length( jki+1)−arc−length( jki )
ti+1−ti

i = 1

arc−length( jki )−arc−length( jki−1)

ti−ti−1
i = n

arc−length( jki+1)−arc−length( jki−1)

ti+1−ti−1
otherwise

arc− length( jk
i ) =

i

∑
a=2
|| jk

a− jk
a−1||

(6-29)

Where i,a ∈ f rames 1...n of joint jk.
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Acceleration error. This feature measures the difference in the acceleration of a joint path

in a motion instance and the acceleration of a joint path in the corresponding task axis for that

joint, where acceleration is the ratio of speed to performance time. Given a motion instance for

candidate user C, an actively moving joint jk
C, and a set of joint articulation paths for the

corresponding joint task axis T
jkC

σ , then the acceleration error is computed as:

AE(C) =
1
q

q

∑
k=1

AE( jk
C)

AE( jk
C) =

1
U−1

U−1

∑
u=1

AE( jk
C, jk

u)∀T ∈ T
jkC

σ

AE( jk
C, jk

u) =
1
n

n

∑
i=1
|A( jk

C, i)−A( jk
u, i)|

(6-30)

Where AE( jk
C, jk

u) is the acceleration error between two joint articulation paths, AE( jk
C) is the

acceleration error over all the joint articulation paths in the joint task axis, and AE(C) is the

acceleration error over all the actively moving joints and Ak
c(i) - Ak

T (i) are the accelerations of the

joint paths, computed as the ratio of the velocity of the joint at i and the time duration at i. From

Laban Movement Analysis [72], the acceleration of a joint jk at frame i can be computed as:

A( j, i) =



S( j,i+1)−S( j,i)
ti+1−ti

i = 1

S( j,i)−S( j,i−1)
ti−ti−1

i = n

S( j,i+1)−S( j,i−1)
ti+1−ti−1

otherwise

(6-31)

Jerk error. This feature measures the difference in the jerk of a joint path and the jerk of a

joint path in the corresponding task axis for that joint, where jerk is the ratio of acceleration to

performance time. Given a motion instance for candidate user C, an actively moving joint jk
C, and

a set of joint articulation paths for the corresponding joint task axis T
jkC

σ , then the jerk error is
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computed as:

JE(C) =
1
p

p

∑
k=1

JE( jk
C)

JE( jk
C) =

1
U−1

U−1

∑
u=1

JE( jk
C, jk

u)∀T ∈ Tσ
jk
C

JE( jk
C, jk

u) =
1
n

n

∑
i=1
|J( jk

C, i)− J( jk
u, i)|

(6-32)

Where JE( jk
C, jk

u) is the jerk error between two joint articulation paths, JE( jk
C) is the jerk error

over all the joint articulation paths in the joint task axis, and JE(C) is the jerk error over all the

actively moving joints and Jk
c(i) - Jk

T (i) are the jerks of the joint articulation paths, computed as the

ratio of the acceleration of the joint at i to the time duration at i. From Laban Movement Analysis

[72], the jerk of a joint jk at frame i can be computed as:

J( j, i) =



A( j,i+1)−A( j,i)
ti+1−ti

i = 1

A( j,i)−A( j,i−1)
ti−ti−1

i = n

A( j,i+1)−A( j,i−1)
ti+1−ti−1

otherwise

(6-33)

In total, we proposed 11 joint-level features that quantitatively describe properties of a joint

articulation path: Shape error, Shape Variability, Bend Error, Bend Variability, Length Error, Size

Error, Efficiency, Time Error, Speed Error, Acceleration Error, and Jerk Error, which we then

combine with the global-level features from prior work [132] to analyze children’s and adults’

motions. Fig. 6-2 shows an example of a joint-level feature computation on a joint articulation

path of a motion.

6.1.3 Analysis

Our analysis aims to identify the features that differentiate child motion from adult motion.

We computed both the global- and joint-level features on the same subset of motions from the

Kinder-Gator dataset presented in Table 4-1 from Chapter 4. Recall that the motions in this subset

include:
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Figure 6-2. Shape Error (sum of d’s) computed by comparing two articulation paths of the wrist
joint of a Raise your hand motion where the blue path is the joint task axis on
postures of a Raise your hand motion

1. Upper-Body Motions: “Raise your hand (RYH)”, “Point at the camera (PAC)”, “Raise
your arm to one side (RAS)”, “Put your hands on hips and lean to one side (PHL)”, “Punch
(P)”, “Throw a ball as far as you can (TBF)”, “Swipe across an imaginary screen in front of
you (SIF)”, “Bow (B)”, “Touch your toes (TYT)”.

2. Lower-Body Motions: “Bend your knee (BYK)”, “Lift your leg to one side (LYL)”, “Kick
a ball as hard as you can (KBH)”.

3. Full-Body Motions: “Do a forward lunge (DFL)”, “Jump (J)”.

We categorized a motion as upper-body if only the limbs of the upper-body are required to

perform the motion. Lower-body if only limbs of the lower-body are required to perform the

motion. Full-body if both the limbs of the upper and lower body are required to perform the

motion.

6.1.3.1 Feature computation

Because we are comparing child and adult motion, we account for height differences: we

use participant height as a normalization factor for the global-level features, estimated as the

absolute difference between a user’s head and foot in the y-dimension of the first frame when

performing the Raise hand motion. This movement guarantees that the participant is standing in
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A)

B)

Figure 6-3. Flowcharts showing steps for computing global-level and joint-level features. The
motions have already been smoothed using an exponential moving average filter. A)
Flowchart detailing the steps for computing global-level features. B) Flowchart
detailing the steps for computing joint-level features.

the first frame. For the joint-level features, we account for height differences by scaling the path

using the uniform approach proposed in gesture recognition literature [134]. We scaled the path

after smoothing the joint articulation path using an exponential moving average filter to remove

tracking noise, similar to prior work [5], resampled to n = 32 points and translated such that the

path’s centroid is at the origin. Figures 6-3A and 6-3 are flowcharts showing the steps for

computing the global-level and joint-level features, respectively.

6.1.3.2 Statistical analysis

To understand differences between how children and adults perform motions, we analyzed

the computed feature values statistically using ANOVA. Because none of our data satisfied the

requirements for normality, we used a non-parametric version of the ANOVA test, known as the

Aligned Rank Transform (ART) [146]. For each of the features, we ran a two-way

repeated-measures ANOVA with a between-subjects factor of age group (child, adult) and a

within-subjects factor of motion type (14 motions: touch your toes, point at the camera, raise your

hand, raise your arm to one side, bend your knee, put your hands on your hip and lean to one side,

do a forward lunge, lift your leg to one side, jump, throw a ball as far as you can, and kick a ball

as hard as you can). Since we want to understand how children’s motions differ from adults’

motions, we are only interested in the main effect of age group and the interaction effect between
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age group and motion type (different motion types will be guaranteed to exhibit different feature

values). All post-hoc analysis was done using the Tukey method.

6.1.4 Results

We now present the results from computing the global-level and joint-level features on a

subset of children’s and adults’ motions from the Kinder-Gator dataset [3] and analyzing the

results using an ANOVA.

6.1.4.1 Global-level features

As a reminder, we use 13 features defined by Vatavu [132] for characterizing human motion

performance comprising spatial features (relates to distance), kinematic features (relates to time),

and appearance features (relates to the composition of postures). We present our results below:

Gesture volume (GV) and Gesture area (GA): GV measures the volume of the 3D space

where the motion is performed and is computed as the product of the difference between the

maximum and minimum positions of the body in the x, y, and z dimensions. GA measures the

area of the 2D space in front of the motion sensor and is computed the same way as GV without

the z dimension [132]. We found a significant main effect of age group for both features (GV:

F1,18 = 6.44, p < 0.05, GA: F1,18 = 20.18, p < 0.001), with children requiring a larger 3D and 2D

space (GV: mean(M) = 0.20m3, standard deviation (SD) = 0.11, median = 0.18, GA: M = 0.55m2,

SD = 0.17, median = 0.52) as compared to adults (GV: M = 0.16m3, SD = 0.12, median = 0.12,

GA: M = 0.44m2, SD = 0.13, median = 0.41), when normalized for height. We also found a

significant interaction effect between age group and motion type for both features (GV:

F13,234 = 3.28, p < 0.001, GA: F13,234 = 4.68, p < 0.001). Post-hoc tests for GV revealed that

children and adults require similar 3D space for all motion types except “Jump”, “Lift your leg to

one side”, and “Touch your Toes”, wherein children require a larger 3D space (Figure 6-5A). For

GA, children required a larger 2D space for all motion types except “Jump”, “Swipe across an

imaginary screen”, and “Raise your hand”, wherein children required a larger 2D space (Figure

6-5B). Therefore, in general, children use more space (proportionally) compared to adults.
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A)

B)

Figure 6-4. Gesture Volume and Gesture Area by motion type and age group. A) Gesture volume
by motion type and age group, ordered in ascending order of children’s gesture
volume. B) Gesture area by motion type and population. Error bars denote 95%
confidence interval.
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Quantity of movement (QM), Quantity of upper body movement (QUM), Quantity of

lower body movement (QLM): QM, QUM, and QLM measure the amount of movement in the

whole body, upper body, and lower body, respectively and is computed as cumulative pairwise

Euclidean distance between corresponding joints of time–consecutive frames of the motion. We

found no significant main effect of age group for all features (QM: F1,18 = 0.64,n.s., QUM:

F1,18 = 1.28,n.s, QLM: F1,18 = 0.0004,n.s.). However, we found a significant interaction effect

between age group and motion type across all features (QM: F13,234 = 4.79, p < 0.0001, QUM:

F13,234 = 4.20, p < 0.0001, QLM: F13,234 = 5.22, p < 0.0001). Post hoc tests for QM revealed that

children and adults require a similar quantity of movement for all motions except “Swipe across

an imaginary screen” and “Raise your hand” (Figure 6-5A). For QUM, children required more

quantity of upper body movement for the motion “Swipe across an imaginary screen” (Figure

6-5B) while for QLM, children required more quantity of lower body movement for the motion

“Raise your hand” (Figure 6-6). These findings suggest that for the motion types we considered,

children make the same amount of movements as adults. However, children’s movements tend to

differ from adults when raising their hand or swiping across an imaginary screen.

Difference of movement (DM) and Ratio of movement (RM): DM measures the absolute

difference between the upper body and lower body movement while RM measures the ratio of the

upper body to lower body movement [132]. We found no significant effect of age group for DM

(F1,18 = 3.52,n.s.) but found a significant effect of age group for RM: (F1,18 = 35.82, p < 0.001),

, with children having a lower ratio of upper body to lower body movement (M = 2.91, SD = 2.04,

median = 2.41) compared to adults (M = 3.77, SD = 3.45, median = 2.29); children moved their

upper body more in comparison to their lower body as compared to adults. We found a significant

interaction effect between age group and motion type (DM: (F13,234 = 2.58, p < 0.01), RM:

(F13,234 = 7.67, p < 0.001)). For DM, post-hoc tests only revealed a marginal difference between

children and adults for the “Swipe across an imaginary screen in front of you” motion (Figure

6-7A). Although we found a significant interaction effect for RM, post-hoc tests revealed no

significant difference between interaction pairs after Tukey correction (Figure 6-7B). The Tukey
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A)

B)

Figure 6-5. Quantity of Movement and Quantity of Upper Body Movement by motion type and
age group. A) Quantity of Movement by motion type and population, sorted in
ascending order of children’s quantity of movement. B) Quantity of Upper Body
Movement by motion type and age group. Error bars denote 95% confidence interval.
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Figure 6-6. Quantity of Lower Body Movement by motion type and age group, order of motion
types is same as the figures in Figure 6-5. Error bars denote 95% confidence interval.

post-hoc correction could have significantly penalized the p-values to reduce the risk of type I

error (i.e., rejecting the null hypothesis when the hypothesis is true). These findings indicate that

for the motion types we considered, children move their upper body more in comparison to their

lower body.

Performance time (PM) and Average gesture speed (AGS): PT measures the time a user

takes to perform the motion while AGS is the ratio of quantity of movement to performance time

[132]. We found a significant main effect of age group for both features (PT:

(F1,18 = 8.08, p < 0.01), AGS: (F1,18 = 29.37, p < 0.001)) with children moving faster (M =

3.20s, SD = 1.17, median = 2.90) and at a higher speed (M = 0.16m/s, SD = 0.09, median = 0.14)

as compared to adults (PT: m = 3.76s, SD = 1.19, median = 0.14, AGS: M = 0.12m/s, SD = 0.07,

median = 0.09). We also found a significant interaction effect between age group and motion type

for both features (PT: (F13,234 = 2.26, p < 0.01), AGS: (F13,234 = 2.83, p < 0.01)). Post-hoc tests

revealed that children moved at similar speeds as adults for all motion types except “Bend your
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A)

B)

Figure 6-7. Difference of Movement and Ratio of Movement by motion type and population. A)
Difference of Movement by motion type and population, sorted in ascending order of
children’s difference of movement. B) Ratio of Movement by motion type and
population. Error bars denote 95% confidence interval.
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knee”, “Jump”, “Raise your hand”, and “Swipe across an imaginary screen” (Figure 6-8A). Like

ratio of movement, post-hoc tests for performance time showed no significant difference between

interaction pairs after Tukey correction (Figure 6-8B). These findings indicate that children

generally move faster than adults, corroborating findings from prior work [4].

Body posture variation (BPV) and Body posture diffusion (BPD): BPV measures the

deviation of postures from the centroid posture while BPD measures the maximum difference

between postures [132]. We found no significant effect of age group for both features (BPV:

(F1,18 = 0.67,n.s.), BPD: (F1,18 = 0.95,n.s.)). However, we found a significant interaction effect

(BPV: (F13,234 = 80.88, p < 0.001), BPD: (F13,234 = 4.18, p < 0.001)). Children and adults had

similar posture variations for all motion types except “Raise your hand” and “Jump”, wherein

children have a larger body posture variation than adults (Figure 6-9A). Children and adults have

similar posture diffusion for all motion types except “Raise your hand”, wherein we found a

marginal difference (Figure 6-9B). These findings suggest that children and adults use similar

posture compositions to perform motions.

Body posture density (BPDe) and Body posture rate (BPR). BPDe is the ratio of Body

posture variation (BPV) to gesture volume (GV) while BPR is the ratio of BPV to performance

time [132]. We found a significant main effect of age group (BPDe: (F1,18 = 10.74, p < 0.01),

BPR: (F1,18 = 18.99, p < 0.01)), with children having lower posture densities (M = 6.70m−2, SD

= 3.19, median = 5.89) but higher posture rates (M = 0.42m/s, SD = 0.26, median = 0.37) as

compared to adults (BPDe: M = 8.05m−2, SD = 4.28, median = 6.87, BPR: M = 0.32m/s, SD =

0.21, median = 0.24). We also found a significant interaction effect between age group and

motion type for both features (BPDe: (F13,234 = 3.16, p < 0.001), BPR:

(F13,234 = 1.91, p < 0.05)). Children and adults had similar posture densities for all motion types

except “Lift your leg to one side” (Figure 6-10A) and had similar posture rates for all motion

types except “Bend your knee”, “Jump”, and “Put your hands on your hips” (Figure 6-10B).

Vatavu [132] noted that both of these features help to differentiate between motions that have a

similar Body posture variation. These findings suggest that children’s and adults’ motions will
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A)

B)

Figure 6-8. Performance Time and Average Gesture Speed by motion type and population. A)
Performance Time by motion type and population, sorted in ascending order of
children’s performance time. B) Average Gesture Speed by motion type and
population. Error bars denote 95% confidence interval.
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A)

B)

Figure 6-9. Body Posture Variation and Body Posture Diffusion by motion type and population.
A) Body Posture Variation by motion type and population, sorted in ascending order
of children’s body posture variation. B) Body Posture Diffusion by motion type and
population. Error bars denote 95% confidence interval.
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differ in appearance (i.e., the distribution of their body postures) when the space and time they

require to perform the motion are considered.

6.1.4.2 Joint-level Features

Next, we report findings from computing our 11 geometric features on the same subset of

14 children’s and adults’ motions. Similar to the results presented above, we are interested in the

main effect of age group (child, adult) and interaction effect between age group and the motion

types.

Shape error (ShE) and Shape variability (ShV). ShE measures the average absolute

deviation of the shape of a joint path in a motion instance from the shape of the same joint path in

the joint task while ShV measures how uniform the shape errors are along a joint path. We found

a significant effect of age group for both features (ShE: (F1,18 = 137.20, p < 0.0001), ShV:

(F1,18 = 25.62, p < 0.0001)) with children having higher shape errors (M = 0.31, SD = 0.08,

median = 0.31) and shape variabilities (M = 0.17, SD = 0.06, median = 0.17) compared to adults

(ShE: M = 0.20, SD = 0.08, median = 0.21, ShV: M = 0.11, SD = 0.06, median = 0.10). We found

a significant interaction effect between age group and motion type for both features (ShE:

(F13,234 = 4.70, p < 0.0001), ShV: (F13,234 = 4.41, p < 0.0001)). Post hoc tests revealed that

children and adults have similar shape errors for all motion types, except “Bend your knee”,

“Bow”, “Do a forward lunge”, “Jump”, “Lift your leg to one side”, “Point at the camera”, “Put

your hands on your hips and lean to the side”, “Raise your arm to one side”, “Swipe across an

imaginary screen”, and “Throw a ball as far as you can”, for which chidren have higher shape

errors (Figure 6-11A). Children had higher shape variability compared to adults for all motion

types, except for “Do a forward lunge”, “Kick a ball as hard as you can”, “Point at the camera”,

“Swipe across an imaginary screen”, and “Throw a ball as far as you can” (Figure 6-11B).

Therefore, children show more variations in how they move their body parts as compared to

adults for most motion types, thus making them more inconsistent.

Bend error (BE) and Bend variability (BV). BE measures users’ tendency to bend or

curve the joint path while BV measures how uniform the bend errors are along the joint path. We

114



A)

B)

Figure 6-10. Body Posture Density and Body Posture Rate by motion type and population. A)
Body Posture Density by motion type and population, sorted in ascending order of
children’s body posture density. B) Body Posture Rate by motion type and
population. Error bars denote 95% confidence interval.
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A)

B)

Figure 6-11. Shape Error and Shape Variability by motion type and population. A) Shape Error
by motion type and population, sorted in ascending order of children’s shape errors.
B) Shape Variability by motion type and population. Error bars denote 95%
confidence interval.
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found a significant main effect of age group for both features (BE: F1,18 = 78.61, p < 0.0001, BV:

F1,18 = 36.50, p < 0.0001) with children having higher bend errors (M = 0.31, SD = 0.09, median

= 0.30) and bend variabilities (M = 0.35, SD = 0.10, median = 0.36) as compared to adults (BE:

M = 0.24, SD = 0.09, median = 0.23, BV: M = 0.41, SD = 0.09, median = 0.39). We also found a

significant interaction effect between age group and motion type (BE: F13,234 = 7.35, p < 0.0001,

BV: F13,234 = 6.81, p < 0.0001). Post hoc tests revealed that children and adults have similar

bend errors for all motion types, except “Lift your leg to one side”, “Point at the camera”, “Raise

your hand”, and “Swipe across an imaginary screen” (Figure 6-12A). Children also had higher

bend variability compared to adults for all motion types, except for “Raise your arm to one side”,

“Raise your hand”, and “Swipe across an imaginary screen” (Figure 6-12B). Hence, children vary

in how they bend their body parts to perform motions across instances of the same motion.

Length error (LE) and Size error (SE). LE measures a user’s tendency to stretch their

joint path, as measured by the path length, while SE measures a user’s tendency to stretch the

joint path with respect to the gesture volume (GV). We found a significant main effect of age

group for both features (LE: (F1,18 = 35.28, p < 0.0001), SE: F1,18 = 37.44, p < 0.0001) with

children having higher length errors (M = 0.44, SD = 0.27, median = 0.39) and higher size errors

(M = 0.13, SD = 0.06, median = 0.13) as compared to adults (LE: F13,234 = 6.42, p < 0.0001, EF:

(F13,234 = 3.21, p < 0.0001)). We also found a significant interaction effect between age group

and motion type for both features (LE: F13,234 = 6.42, p < 0.0001, SE:

(F13,234 = 3.21, p < 0.0001)). Post-hoc tests revealed that children and adults have similar length

errors for all motions except “Lift your leg to one side”, “Point at the camera”, “Raise your hand”,

and “Do a forward lunge” (Figure 6-13A). Children had higher size errors than adults for the “Do

a forward lunge” motion (Figure 6-13B). The length error results corroborate the shape error

results in that children are inconsistent in how they move their body parts. The size error results

indicate that not only do children require more space to perform motions (see gesture volume and

gesture area results), but they also vary in the amount of space they require to perform motions

across instances of the same motion.
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A)

B)

Figure 6-12. Bend Error and Bend Variability by motion type and population. A) Bend Error by
motion type and population, sorted in ascending order of children’s bend errors. B)
Bend Variability by motion type and population. Error bars denote 95% confidence
interval.
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A)

B)

Figure 6-13. Length Error and Size Error by motion type and age group. A) Length Error by
motion type and age group, sorted in ascending order of children’s length errors. B)
Size Error by motion type and age group, , sorted in ascending order of children’s
length errors. Error bars denote 95% confidence interval.
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Efficiency (E). Efficiency measures how efficient a path is in comparison to the joint task

axis, which is the ideal path. We found a marginal effect of age group for efficiency

(F1,18 = 3.93, p = 0.06) and no significant interaction effect between age group and motion type

(F13,234 = 0.53,n.s.) (Figure 6-14). These findings suggest that for the motion types considered,

children move just as efficiently as adults. However, we note that the marginal effect shows the

potential of children being less efficient than adults. We posit that age will play a major role in the

efficiency of children’s motion performance with younger children (≤ 6 years) being less efficient

than older children (> 6 years) because their motor abilities are less developed [23].

Time error (TE) and Speed error (VE). TE measures the difference between the total

time it takes to articulate a joint path to the time it takes to articulate the joint task axis while VE

measures the average difference in the speed of the joint path in a motion instance and the speed

of a joint path in the corresponding joint task axis. We found no significant main effect of age

group for TE (F1,18 = 0.74,n.s.), but found a significant interaction effect between age group and

motion type (F13,234 = 9.33, p < 0.0001). Post hoc tests revealed that children and adults have

similar time errors for all motion types, except “Do a forward lunge”, for which children had a

lower time error than adults and “Point at the camera”, for which children had a higher time error

compared to adults (Figure 6-15A). In contrast to time error, we found a significant main effect of

age group for speed error (F1,18 = 23.05, p < 0.001), with children having a higher speed error

(M = 0.30, SD = 0.12, median = 0.27) as compared to adults (M = 0.27, SD = 0.10, median =

0.21). We also found a significant interaction effect (F13,234 = 3.51, p < 0.0001). Children and

adults have similar speed errors for all motion types, except “Do a forward lunge” and “Put your

hands on your hips and lean to the side”, for which children had higher speed errors as compared

to adults (Figure 6-15B). Taken together with performance time (a global-level feature), our time

error results suggest that children are consistently faster than adults when performing motions.

Our speed error results indicate that even though children move consistently faster than adults,

they vary in the rate at which they move their body parts throughout the motion, further

corroborating our length error findings.
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Figure 6-14. Efficiency by motion type and age group sorted in ascending order of children’s
efficiency errors

Acceleration error (AE) and Jerk error (JE). AE and JE measure the average difference

in the acceleration and jerk of a joint path and the acceleration and jerk of a joint path in the

corresponding joint task axis respectively. We found a significant main effect of age group for

both features (AE: (F1,18 = 80.67, p < 0.0001), JE: F1,18 = 70.07, p < 0.0001), with children

having higher acceleration errors (M = 0.28, SD = 0.13, MEDIAN = 0.25) and jerk errors (M =

2.85, SD = 1.72, MEDIAN = 2.41) as compared to adults (AE: M = 0.19, SD = 0.11, MEDIAN =

0.17, JE: M = 1.69, SD = 1.49, MEDIAN = 1.28). We also found a significant interaction effect

between age group and motion type for both features (AE: F13,234 = 5.01, p < 0.0001, JE:

F13,234 = 5.92, p < 0.0001). Post hoc tests revealed that children and adults have similar

acceleration errors for all motion types, except “Punch”, “Raise your arm to one side”, and

“Swipe across an imaginary screen”, for which children had higher acceleration errors as

compared to adults (Figure 6-16A). Children had higher jerk errors than adults for motions

“Bow”, ”Lift your leg to one side”, ”Punch”, ”Put your hands on your hips and lean to one
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A)

B)

Figure 6-15. Time Error and Speed Error by motion type and population. A) Time Error by
motion type and population, sorted in ascending order of children’s time errors. B)
Speed Error by motion type and population. Error bars denote 95% confidence
interval.
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side”,”Raise your arm to one side”,”Swipe across an imaginary screen”, and ”Throw a ball as far

as you can” (Figure 6-16B). Prior work has noted that high levels of jerk indicate that the motions

are performed quickly, with more urgency and with less smoothness [137]. Since the global-level

features showed us that children move faster and with higher speeds, taken with these results, we

can also deduce that children move with significantly higher acceleration and jerk than adults.

Hence, children’s motions will be less smooth in general as compared to adults’ motions.

For the global-level features, we found a significant difference in 6 of the 13 features, which

indicates that children’s motions in the Kinder-Gator dataset differed from adults’ motions with

respect to the specific property being measured by each of these six features (starred in Table 6-1).

For the joint-level features, we found significant differences in all but 2 of the 11 features (starred

in Table 6-1). Since the joint-level features compare articulation paths, this finding indicates that

children move more inconsistently than adults for each of the specific property being measured.

6.1.5 Feature Validation

Although ANOVA tests are useful for identifying features that are relevant for

distinguishing between children and adults, this test might not capture the optimal subset of

features that distinguish child motion from adult motion because it does not consider feature

interactions [151]. For example, ANOVA test can tell us whether age group has an impact on a

feature but does not consider the impact of age group on multiple features for its analysis. Hence,

in addition to the statistical test above, we apply a feature selection method to identify the optimal

subset of features for differentiating child motion from adults motions. Specifically, we use the

Wrapper method [84].

6.1.5.1 Wrapper method

The Wrapper method [84] uses a machine-learning classifier as a “black box” to identify a

subset of features that results in the best performance for that classifier. Although Wrapper

methods are more computationally expensive than ANOVAs, which are also used for feature

selection, their results are more accurate [84]. Therefore, we use our ANOVA results as a

pre-selection step prior to identifying the optimal subset of features. For the Wrapper method, we
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A)

B)

Figure 6-16. Acceleration Error and Jerk Error by motion type and population. A) Acceleration
Error by motion type and population, sorted in ascending order of children’s
acceleration errors. B) Jerk Error by motion type and population. Error bars denote
95% confidence interval.
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Table 6-1. List of Articulation Features. * means the feature was significant with respect to age
group at p < 0.05.

Global-Level Features (13) Joint-Level Features (11)
Gesture Volume* Shape Error*
Gesture Area* Shape Variability*
Quantity of Body Movement Bend Error*
Quantity of Upper Body Movement Bend Variability*
Quantity of Lower Body Movement Length Error*
Difference of Movement Size Error*
Ratio of Movement* Efficiency
Performance Time* Time Error
Average Gesture Speed* Speed Error*
Body Posture Variation Acceleration Error*
Body Posture Diffusion Jerk Error*
Body Pose Density*
Body Pose Rate*

use the Holdout-SVM linear kernel Wrapper method algorithm (HO-SVM) proposed by

Maldonado and Weber [84]. This algorithm combines an SVM classifier with the backward

selection pruning method to select an optimal subset of features. In backward selection, the

algorithm begins with the full set of features and then recursively removes the feature without

which the classifier achieves the best performance [84]. Consequently, Wrapper methods are also

known Recursive Feature Elimination (RFE) methods [47]. To implement the HO-SVM

algorithm, we directly apply the steps described in Maldonado’s and Weber’s paper [84] with

some modifications:

Model selection. Determine the parameters for the SVM. Because we are using a linear

kernel, the only parameter we need to determine is C, which determines the margin of the

hyperplane. We used a Receiver Operating Characteristic (ROC) Curve with varying values of C

= {0.1,0.5,1,5,10,20,30,40,50,60,70,80,90,100}. C was set to 20.

Initialization. Initialize a feature set α comprising the full set of features (Backward

Selection). Because we are using the ANOVA results as a pre-selection phase, the full set of

features will only be the features in which we found a significant effect of age group, namely: (all

global-level features except quantity of movement, quantity of upper body movement, quantity of

lower body movement, body pose variation and body pose diffusion and all joint-level features
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except time error and efficiency). Hence, each motion is initially represented in the form (x,y)

where x represents a set of articulation features and y represents the true label in which the

motion belongs (i.e., child, adult).

Repeat the following five steps until the maximum recognition accuracy achieved after

feature removal is less than or equal to the recognition accuracy without removing any of the

features in the current feature set (i.e., max(Γα(−p))≤ Γα ).:

1. Train and test the SVM using 10-fold cross-validation. In the original algorithm, the
authors randomly split the data into training and testing and suggested that we run the entire
algorithm multiple times to get the optimal subset. However, we noticed that this idea
introduced too much randomness in our results, with each run returning a different set of
feature. Hence, we used cross-validation, which has been used extensively in machine
learning to guarantee the reliability of the classifier.

2. Compute recognition accuracy Γα . The original algorithm uses recognition error instead,
which is equivalent (accuracy = 1-error).

3. For each feature p in α , remove p from the current set of features.

4. Train and test the SVM classifier on the remaining subset of features using 10-fold
cross-validation and compute recognition accuracy Γα(−p) .

5. Remove feature p with the maximum accuracy (i.e., max(Γα(−p)) from among all features in
the current feature set α .

Next, we discuss our findings after applying the Wrapper method to the subset of features

that showed a significant effect based on the ANOVA results.

6.1.5.2 Results

Our algorithm terminated after two iterations (i.e., two features were removed from the set

of features). In the first iteration, “Average Gesture Speed” was removed while in the second

iteration, “Bend Variability” was removed, with a final recognition accuracy of 80.7%. The

resulting optimal set of 14 features for distinguishing child motion from adult motion is shown in

Table 6-2.

6.1.6 Summary

So far, we have presented a set of global-level features and joint-level features to

quantitatively describe motions. Using these features, we analyzed a subset of children’s and
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Table 6-2. Optimal subset of features after applying ANOVA and the HO-SVM Wrapper method
Features

Gesture Volume Shape Variability
Gesture Area Bend Error
Ratio of Movement Length Error
Performance Time Size Error
Body Pose Density Speed Error
Body Pose Rate Acceleration Error
Shape Error Jerk Error

adults’ motions using a statistical test and further validated the subset using a Wrapper method to

select the optimal set of features. Overall, the main take-aways, focusing on our optimal subset of

features include:

1. Children require more space compared to adults (Gesture Volume, Gesture Area)

2. Children are more inconsistent in how they move their body parts compared to adults
(Shape Error, Shape Variability, Bend Error, Bend Variability, Length error)

3. Children move faster compared to adults but show more variations in speed (Performance
Time, Speed Error)

4. Children perform motions with less smoothness, as indicated by their higher levels of
acceleration and jerk (acceleration error, jerk error).

5. Children performed certain motion types differently from adults, as indicated by the
interaction effect between age group and motion type across multiple features. For
example, Children and adults were different across 8 out of 13 features for “Swipe across
an imaginary screen”, “Lift your leg to one side” (6/13), and “Do a forward lunge” (5/13),
confirming that the type of motion being performed affects children’s motion performance.

6.2 Qualitatively Describing Children’s Motion Articulations

Our quantitative results showed that children are generally inconsistent in how they perform

motions compared to adults. To better understand in what ways children are inconsistent, thus

providing support for our quantitative results, we qualitatively analyzed children’s motions. Prior

work in the motor development literature has shown that the development of children’s motor

skills varies by age [23], so we also investigated whether the motion qualities of younger children

( 6 years) will differ from those of older children during our analysis. To help us with

qualitatively analyzing children’s motion data, we used an inductive coding approach [87].
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For the qualitative analysis, we included some additional motions from the Kinder-Gator

dataset: mirror motions (10 motions in total, e.g., Raise your other hand), motions differing in

strength (3 motions, e.g., Throw ball), and motions indistinguishable from motions in the

representative set of motions using the Kinect v1 alone (2 motions, e.g., Push an imaginary

button). These motions had been excluded from our representative set of motions, which we used

for our quantitative analysis due to being too similar to other motions. Including these motions in

our qualitative analysis will enable us to understand whether children perform motions differently

when using dominant vs. non-dominant hand or when the strength required to perform the motion

differs. In total, we analyzed 29 motions.

6.2.1 Method

We conducted a qualitative, thematic analysis of the RGB videos of children performing

motions (290 motions in total, 29 motions across 10 videos). Three researchers (coder1, coder2,

and coder3) participated in the analysis process; coder1 is the author of this dissertation work.

Coder1 began with an open coding pass of all 29 motions from two randomly selected videos of

children’s motions. Then, Coder1 developed a codebook reflecting codes that described objective

and subjective qualities of how children perform motions (the full codebook is added to the

appendix). The codes were developed based on observable characteristics of children’s motions

that seemed to differ clearly from adults’ motion performance, based on c1’s expert

understanding about adults’ motion performance. These characteristics include how children

moved each body part (4 codes, e.g., number of arms [used in] movement), how they moved

multiple body parts relative to each other (27 codes, e.g., direction of leg movement), how much

effort they used to perform the motions (3 codes, e.g., effort used to move the arms), and the

speed of their body movements (1 code: body speed). Then, c1, c2, and c3 coded random subsets

from the set of 29 motions in one of the earlier selected videos and met to discuss code

disagreements and refine code definitions. Then, coder1 coded different random 10% subsets of

the motions (29 motions in total) with coder2 and coder3 respectively, to compute Inter-Rater

Reliability (IRR), a measure of the degree of agreement among coders [49], in order to
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understand the robustness and reliability of the codebook. We measured IRR using Cohen’s

Kappa, which ranges from -1 (perfect disagreement) to 1 (perfect agreement) [51].

The coding comparison showed a Kappa value of 0.44, with a 61% average agreement

among coder pairs. The Kappa value reflects moderate agreement according to Landis and Koch’s

scale [73]. Le Bras et al. noted that such moderate agreement “reflects a codebook which was

meaningful (objective) but not too restrictive (allowed subjectivity)” [74]. This is especially the

case for our codebook as we had four codes (effort upper body, effort arm, effort leg, and body

speed) that required coders to compare a child’s movement to that of a referent (i.e., a

representative sample of a motion). In addition, we believe that this moderate level of agreement

further reflects the variations in how children perform motions, which could have further

increased the subjective disagreements among coders. Even for codes that seemed simple and

objective (e.g., number of arms bent), we still noticed a high number of disagreements among

coders. Children often made movements that were subtle (e.g., slight bending of the arm as a

result of the forceful movement of other body parts). Because such movements are not easily

noticeable, coders disagreed on whether the movement actually occurred, which affected the

objective codes. Finally, coder1, who had the most experience investigating children’s motions,

coded all 290 motions in the dataset to ensure consistency in the final interpretations. A limitation

of this approach is that the codes are not generalizable (i.e., another coder coding the same set of

motions may not have the same codes). To mitigate the effect of this limitation on our findings, all

three coders met to discuss and agree on the themes that emerged from the analysis.

6.2.2 Results

After coding, using our own expert mental models, we looked through the codes to identify

instances in which children performed motions differently from the expected way the motion

should be performed (e.g., using two arms to raise a hand instead of one arm). Next, we identified

themes that each express a behavior exhibited by the children that caused the instances to occur,

thus resulting in variations in children’s motion performance. We will now discuss the themes
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that resulted from our analysis. While the specific examples we reference within each theme are

based on coder1’s codes, the themes were agreed upon by all coders of the dataset.

Uncertainty during the motion. Children initially performed movements different from

what they apparently intended. We noticed that some children initially started performing a

motion with one limb, interrupted the motion of that limb and then started the same motion with

the opposite limb. For example, when performing the motion “Raise your arm to one side”,

(Child A, 6 years old) began raising their left arm. Prior to raising that arm completely to the side,

the child dropped the arm and raised their right arm instead. In our dataset, this behavior

predominantly occurred in motions involving one arm. Our analysis showed that for such

motions, some children moved both arms, indicating that their actions and intentions were not in

sync: “Raise your hand” (1 child raised both arms), “Raise your other hand” (2), “Raise your arm

to one side” (1), and “Raise your other arm to the other side” (1). We also noticed this behavior

more among younger children (≤ 6 years) when making the mirror motions, such as “Raise your

other hand” (a mirror of the motion “Raise your hand”) and “Raise your other arm to the other

side” (3 children in total). Children in this age range are just beginning to differentiate the left and

right sides of their body [23] and have shorter attention spans [108], so they will take a longer

time processing their thoughts and are more likely to forget what limb they raised previously as

compared to older children (> 6 years). Consequently, they change their motion once they realize

that it is different from what they intended. Although we only saw this behavior in mirror

motions, findings from stroke gesture research suggest that this behavior is common in children’s

interactions. For example, Shaw et al. [120] found that children have a tendency to trace over

gestures they have already drawn (e.g., “A”), indicating that they are changing the gesture to

match what they intended.

In addition, children also showed difficulties knowing when to stop a motion. They would

maintain a particular pose for a long period of time until the experimenter prompted them to stop.

We noticed that this behavior occurred more among younger children. For example, (Child B, 6

years old) raised their arm to one side and maintained the “arm to the side” pose, until the
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experimenter prompted them to stop, after which the child then completed the motion. Our

analysis further showed that the child completed the motion at a slower speed. We believe this

behavior is because younger children sometimes struggle to follow instructions [108].

Uncertainty prior to performing the motion. Children showed confusion when asked to

perform some of the motions,indicating that they were unfamiliar with how the motion the motion

is to be performed, which led the experimenter to show the motion to the child before the child

completed the motion. The confusion occurred among younger children when performing the

“Do a forward lunge” motion (2 children showed confusion), a complex movement involving the

whole-body. For example, Child F (5 years old) said, “. . . I do not know” and shook their head

when asked to perform this motion. This confusion means that children either knew the motion

but did not recognize the name or did not recognize the motion at all. In the case of the former,

the experimenter’s performance of the motion will help the child recollect how the motion is

performed but may also cause the child to modify their motion performance to match that of the

experimenter. In the case of the latter, the child is seeing the motion for the first time and will try

their best to copy how the experimenter performed the motion. This confusion also resulted in

variations in motion performance. Even though the two children were shown the same motion by

the same experimenter, they performed the motion differently. For example, (Child C, 6 years

old) bent both arms while (Child F, 5 years old) only bent only one arm, as indicated by the

“number of arms bent” code. In the US, children of this age (i.e., 5 to 6 years) are either in

Preschool or Kindergarten (i.e., just reached the school age). As such, they are still developing

their movement vocabulary [30] and will have less experience engaging in formal activities that

teach such complex movements (e.g., during Physical Education (PE) classes), which results in

confusions regarding how the motion should be performed. For example, in California, PE

teachers are not required to teach forward and side lunges until the child reaches grade two (i.e.,

around 7 to 8 years old) [30].

Differences in motion performance. Even when children were not confused, some

children still performed similar motions differently. This variation in motion performance
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occurred in motions that required conceptualization of an imaginary object (e.g., “Kick a ball”,

“Throw a ball”), motions that required strength (e.g., “Punch”, “Throw a ball as far as you can”)

and in the two motions involving the whole-body (“Do a forward lunge”, “Jump”). For example,

our analysis showed that three of the ten children threw a ball with both arms while performing

the “Throw a ball” motion, two children threw a ball with both arms when performing the “Throw

a ball as far as you can”, and two children punched with only one arm. Similarly, for the “Kick a

ball as hard as you can” motion, our analysis showed that during the peak pose (i.e., the last pose

before children start to return to the default stand pose), the direction of the kick varied.

Children’s leg faced one of the following directions: forward (pointing towards the camera; 2

children), down (pointing toward the floor, 2 children), forward-down (pointing in between the

camera and the floor, 3 children), and forward-side (pointing forward but not directly at the

camera, 3 children). We also noticed that children performed motions differently from the

“standard” form in which the motion is most often performed, thus resulting in variations in

motion performance. We saw this behavior, for example, during the performance of the “Do a

Forward lunge” motion. Even though the standard form of this motion involves bending both legs

with one leg forward and one leg back, while the knees are facing the forward direction, our

analysis showed that among the eight remaining children who were not confused about the

motion (see the previous section regarding uncertainty prior to performing the motion), four

children bent one leg, three bent both legs but along varying directions, and one child did not

bend any leg. Although variations in children’s motion performance occurred both in younger and

older children, we did notice that younger children were more likely to perform motions

differently for some of the motions. Younger children (< 6years) accounted for two out of the

three children that threw a ball with both arms and for all of the children that threw a ball far with

both arms and punched with only one arm.

Furthermore, children were more likely to be inconsistent when performing motions that

involved multiple limbs as opposed to simpler motions requiring only one limb (e.g., “Raise your

hand”, “Raise your arm to one side”). We noticed that children’s motion performance was
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influenced by prior experiences. For example, (Child F, 5 years old) performed the “Throw a ball”

motion similar to how a pitcher pitches a ball during a baseball game, suggesting that the child

either actively plays or watches baseball. Similarly, a child who actively plays or watches soccer

will likely “Throw a ball as far as you can” with both arms to mimic the soccer throw in and

“Kick a ball as hard as you can” to mimic a free kick. Further corroborating the role of prior

experience, the previous section showed that children with limited experience, in which the

experimenter illustrated the motion, will show inconsistencies in motion performance.

Repetitions. Children sometimes performed multiple repetitions of motions that are not

typically periodic, thus deviating from the expected form. This behavior was the most prevalent

for “Swipe across an imaginary screen” (4 children) and “Swipe across an imaginary screen with

the other hand” (4 children), in which the children swiped their arms multiple times even though

the expected form involves swiping the hand once either from right to left or left to right. Three

other motions were repeated by children unexpectedly as well: “Jump” (2 children), “Jump as

high as you can” (1) and “Punch” (1). This behavior of performing multiple repetitions was

prevalent in younger children; only one older child (Child G, 8 years old) swiped multiple times

when performing the “Swipe across an imaginary screen” motion. Gesell [41] noted that children

at ages 5 to 6 years old are still very active,boisterous, and love to engage in play that involves

gross motor activity, such as swinging and jumping, suggesting that this repetitive behavior may

be because of children’s increased enthusiasm when performing the motions. Our observations of

children’s overall attitude corroborate this idea as we saw that they were often excited and made

random remarks that expressed their enthusiasm when performing motions. For example, (Child

A, 6 years old) laughed and clapped in excitement after performing some of the motions. Our

analysis corroborated this idea as it showed that whenever this repetitive behavior occurred,

children performed the motions at fast speeds and put in extra effort in the key body parts

required to perform the motions (e.g., arms when swiping and legs when jumping).

Unrelated movements. Children also sometimes made movements irrelevant to the actual

motion being performed. Our analysis indicated that children moved and bent unnecessary body
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parts because of unrelated extra movements. For example, (Child F, 5 years old) moved two arms

during the motion “Motion someone to stop,” with the additional arm moving due to the child

swaying both arms forward and backward, a movement unrelated to the motion being performed.

Likewise, (Child D, 5 years old) continuously swayed their body throughout their performance of

the “Point at the camera” motion resulting in lower body movement even though this upper-body

motion only requires the movement of one arm. For lower-body motions, unrelated movement

sometimes meant movement of upper body parts that are not required to perform the motion. For

example, (Child D, 5 years old) placed both arms on their hips toward the end of the “Lift your

leg to one side” motion, thereby adding unrelated arm movements to this lower-body motion.

We also noticed that these unrelated movements often occurred toward the end of the

motion. For example, (Child F, 5 years old) always placed both arms on their hips instead of

placing their arms at the resting position after completing each motion. The same child also

continuously swung their arms on their way back up during the “Touch your toes” motion. We

also noticed that these unrelated movements were sometimes caused by children getting

distracted. For example, (Child G, 8 years old) touched their hair while performing the “Raise

your hand” motion while (Child F, 5 years old) stretched their upper body in an unrelated

movement while performing the “Raise your arm to one side” motion. Although this behavior

sometimes occurred in older children, it was more prevalent in younger children, likely because

they have shorter attention spans and struggle to follow instructions [108].

Unintentional movements. Children also sometimes moved extra limbs unintentionally

when performing motions. We refer to a body part as unintentionally moving if the user is

actively moving the body part but without the user being fully aware of their action. In contrast to

unrelated movements, unintentional movements are relevant to the actual motion being performed

(e.g., to aid in the completion of the motion) but are not required to perform the motion. Our

analysis showed that this behavior often occurred whenever children were performing motions

involving a shift in their center of gravity, causing children to move extra body parts not required

to perform the motion. Hence, this behavior was predominant in lower-body motions that
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involved lifting the feet off the ground (e.g., “Lift your leg to one side, “Bend your knee”).

Although lower-body motions do not require movement of upper body parts, children often

moved their arms apparently unintentionally during the performance of these motions: “Lift your

leg to one side” (9 of 10 children moved their arms), “Lift your leg to the other side” (10), “Bend

your knee” (5), “Bend your other knee” (4), “Kick a ball” (10), “Kick a ball as hard as you can”

(10), ‘Kick a ball with your other leg” (10), “Kick a ball as hard as you can with your other leg”

(10).

Our analysis also showed that children tended to move extra limbs unintentionally when

they overestimated the height or intensity needed to perform the motion, as indicated by the effort

they used to make the movement and their ability to maintain the peak pose (i.e., the pose that

captures the actual movement being performed). For example, during the “Lift your leg to one

side” motion, (Child E, 8 years old) lifted their leg so high but overestimated how high their leg

could reach. As such, the child was unable to maintain the peak pose and faltered (i.e., the leg

dropped to the ground), thus interrupting the motion. Subsequently, when the child raised their

leg that high again, they simultaneously raised their arms. This phenomenon was exhibited by

five of the ten children who performed this motion, of which four children put in extra effort into

moving their legs. Three children faltered when performing the “Kick a ball with your other leg”

motion, of which two children put extra effort into moving their legs. Our analysis further showed

that children are likely to falter when they raise their non-dominant leg to the side. For the “Lift

your leg to one side” motion, both children who raised their non-dominant leg to perform the

motion, faltered while for the “Lift your leg to the other side” motion, four of the six children who

raised their non-dominant leg to perform the motion, faltered. However, we did not notice this

phenomenon in the other lower-body motions.

Although not as prevalent as in lower-limb motions, our analysis showed that children also

moved their lower-body parts unintentionally when performing upper-body motions wherein the

children’s center of gravity can shift depending on how the motion is performed. That is, motions

involving putting hands on the hips and leaning to side and motions involving throwing a ball:
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“Put your hands on your hips and lean to one side” (8 of 10 children moved their legs to perform

the motion), “Put your hands on your hips and lean to the other side” (9), “Throw a ball” (8),

“Throw a ball as far as you can” (10), “Throw a ball with your other leg” (7), and “Throw a ball

as far as you can with your other arm” (10).

We believe that children unintentionally move extra limbs to perform these motions because

they are still developing their motor and postural abilities [23, 55] and have less experience

coordinating their limbs to perform movement compared to adults, resulting in motions that are

not well-coordinated. Hence, they move extra body parts unintentionally to maintain balance

when performing motions. This unintentional movement of extra limbs will lead to variations in

how children perform motions. For example, our analysis showed that when performing the

“Kick a ball” motion, three children moved their right arm along the XY direction to get to the

peak pose, five children moved along the YZ direction, and the remaining two children moved

along the XZ direction. Similarly, during the peak pose, six children had their right arm facing the

side-down (i.e., perpendicular to the body but facing toward the floor) direction, three children

had their right arm facing backward (away from the camera), while the last child had their right

arm facing down.

Although most of the unintentional movements resulted from shifts in children’s center of

gravity as they performed motions, our analysis also showed that some unintentional movements

of extra limbs resulted as a consequence of the intensity with which children moved other body

parts. For example, when performing the “Punch” motion, (Child B, 6 years old)’s left arm

moved due to the intensity with which the child punched with their right arm. Unintentional

movements arising from this type of situation are often subtle, which makes them difficult to

notice with the naked eye but can still be accurately tracked by the motion sensor.

6.3 Discussion

So far, in this Chapter, we have focused on understanding the inconsistencies in how

children and adults perform motions. To do this, we identified features that quantitatively

described users’ motion performance and evaluated these features on a subset of children’s and
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adults’ motions to reveal differences. Our results showed that children move differently from

adults in ways that can be quantified with specific posture- and joint-motion-based articulation

features. For example, children move faster and are more inconsistent in how they move their

body parts to perform motions, as compared to adults. Furthermore, we qualitatively analyzed

children’s motions to understand in what ways children are inconsistent when performing

motions. In this section, we looked across the features to identify themes, in which a theme is an

inference from the result (e.g., children require more space compared to adults). We grouped

these themes to identify dimensions along which children’s motions differ from adults’ motions,

indicating children’s motion qualities, and use findings from prior work and our qualitative

analysis to triangulate our quantitative findings. We also discuss the practical significance of our

articulation features in this section.

6.3.1 Children’s Natural Motion Qualities

The dimensions along which children’s motions differ from adults’ motions include:

Speed: This dimension relates to how fast children perform motions. Children move faster

than adults. Children are consistently faster than adults when performing motions (based on

features like performance time and time error). This finding echoes and deepens prior work,

which showed that children move faster than adults for walking and running motions [4]. Our

results also show that children move with higher speeds but exhibit more variation in the speeds

they use to perform motions (average gesture speed, speed error). Since speed measures the rate

of joint movement and time is consistent, these variations mean that children are inconsistent in

how they move their body parts to perform motions. Findings from our qualitative analysis

corroborate this idea as it showed that when children move at higher speeds, they move extra

limbs unintentionally, resulting in variations in the body parts children move to perform motions.

Prior work in stroke gesture research has shown that gestures articulated at faster speeds have

higher inconsistencies compared to gestures articulated at slower speeds [135]. Hence, there is a

speed-accuracy trade-off relating to children’s motion performance; they move quickly but are
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more inconsistent (i.e., less accurate) in how they perform motions. This trade-off emerges

because children are still developing their motor abilities [23].

Intensity: This dimension relates to the amount of effort used to perform motions. Children

perform more exaggerated motions, therefore more intense, motions as compared to adults.

Children and adults differ in the appearance of their motions when space and time are considered.

Children’s postures are less dense and are completed faster than adults (Body pose density, Body

pose rate) since they require more space and move faster (Gesture volume, Performance time).

Hence, children’s motions will appear more exaggerated as compared to adults, thus requiring

more effort [15, 18]. Prior work in biomechanics supports this finding as it noted that exaggerated

postures require more energy [119]. In addition, prior work in exercise motions also noted that

exaggerated motions require less time [7]; an assertion evidenced by our Performance Time and

Body pose rate findings. Our qualitative findings further support our quantitative results as it

showed that children exaggerate motions. They perform repetitions of postures that are

non-periodic (e.g., jumping twice) and whenever such repetitions occur, children always put in

extra effort to move key body parts (e.g., extra effort in their legs to jump). Like speed, intensity

also plays a role in the inconsistencies children show when performing motions. Since children

are still developing their motor skills [23] and move fast, the additional effort they use to perform

motions could result in loss of control over body parts during movements, resulting in loss of

balance (a behavior that leads to jerky motions).

Smoothness: This dimension relates to how well children move each body part that is

necessary to performing a motion. Children’s motions are less smooth as compared to adults’

motions. Children jerk inconsistently when performing motions (jerk error) but move with higher

levels of jerk in their motions (average gesture speed, performance time). Therefore, children are

more likely than adults to make jerky motions, which explains why children are inconsistent in

how they move body parts (shape error). Furthermore, the inconsistency in the uniformity of their

shape errors means that children are also inconsistent in the ways in which they are inconsistent

(shape variability). Prior work has noted that children in the age range we considered (i.e., 5 to 9)
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are still developing their motor abilities [23]. Therefore, we believe that they perform motions

less smoothly as compared to adults because they have less expertise controlling body parts to

perform motions. Our qualitative findings further supports this idea as it showed that children find

it difficult to control their body parts when performing motions in which they have to maintain

their balance (e.g., “Throw a ball as far as you can”). As mentioned in the previous section, speed

and intensity also play a role in the smoothness of motions. Children are more likely to lose

control over body parts when the motion is performed with high speed and forceful intensity,

especially for complex motions involving the whole-body (“Do a forward lunge” and “Jump”).

Our Shape Error finding validates this idea as it showed that children are not as consistent as

adults when performing both motions.

Coordination: This dimension relates to how well children move body parts relative to

each other. This quality is closely related to smoothness, but coordination involves multiple body

parts. Children make less well-coordinated multi-limb movements as compared to adults.

Motions often require a lateral shift of an individual’s center of gravity and body balance due to

postural changes [119]. Motions involving movements of lower body parts (e.g., “Kick a ball as

hard as you can”, “Lift your leg to one side”, and “Bend your Knee”) shift a user’s center of

gravity once they lift their foot. We know from our other themes that children move with high

speeds and forceful intensity, behaviors that result in a shift in body balance [119]. However,

children are still developing their postural stability [55], indicating that they will often

overestimate the speed and intensity at which a motion should be performed and falter due to loss

of balance. Prior work has noted that children move their arms when performing lower body

movements to maintain balance [55], which may explain why children move their upper body

more than their lower body when performing movements, as compared to adults (Ratio of

Movement). Therefore, we see that children move extra body parts that are not necessary to

motion performance, in order to stabilize their body once they begin to falter. Findings from our

qualitative analysis support this idea as it showed that children overestimate the effort they need

to perform motions involving shifts in an individual’s center of gravity (e.g., “Lift your leg to one
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side”), so they falter. Subsequently, they move their arms to maintain balance. Prior work further

noted that how users account for a shift in body balance will determine their degree of

coordination [55], with well-coordinated movements requiring control over body parts. Since

children move these extra body parts in response to a loss in balance, they will not move these

extra body parts as intentionally (i.e., with full awareness) as the key body parts they are actively

moving. Therefore, children will have little to no conscious control over how these body parts

move (e.g., the direction of movement). Combined with the smoothness dimension, the above

statements indicate that children not only find it difficult controlling one body part in isolation,

but will also find it difficult coordinating multiple body parts.

Prior work further noted that the movement of extra body parts results in inconsistencies in

how children perform motions [5]. The authors computed the degree of agreement among the

actively moving joints when performing lower body motions [5]. The degree of agreement is

defined as the total number of unique joint combinations used to perform a motion. They found

that children had a lower degree of agreement, indicating higher inconsistency, for lower-limb

motions due to some children moving upper body parts (e.g., arms) even though such body parts

were not necessary for motion performance.

6.3.2 Practical Significance of Articulation Features

Our feature validation step provided a set of articulation features that can differentiate child

from adult motion with about 81% accuracy using an SVM classifier. This finding has important

implications for designing emerging technologies in the real-world. For example, smart home

personal assistants currently use voice, a natural communication modality, for interaction. To

fulfill Mark Weiser’s vision that technologies will be interconnected and integrate seamlessly with

the environment [144], future trends of this technology (i.e., smart environments) will likely

benefit from including motions, another natural communication modality, for interaction and

authentication [95]. In our past work, we published the MMGatorAuth dataset to facilitate active

and passive interaction in smart environments using voice and motions [95]. Approximately 32%

of US households already have a smart home device and it is expected to grow to 57% by 2025
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[136]. Since households sometimes comprise both children and adults, it becomes important that

the device can accurately distinguish children’s motions from adults’ motions to mitigate security

and usability concerns. We provide an initial set of features that can be used to ensure accurate

recognition of children’s motions. Future work can identify new child-specific features based on

children’s natural motion qualities we identified to improve the recognition performance.
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CHAPTER 7
DESIGN IMPLICATIONS

As a reminder, the goal of this dissertation work is to investigate the differences between

children’s and adults’ motions to inform an understanding of how children perform motions (i.e.,

their natural motion qualities). We found that children’s natural motions differ from adults’

motions along four dimensions: speed, intensity, smoothness, and coordination. Children perform

motions that are quantifiably faster, more intense, less smooth, and less coordinated. We also

found that the type of the motion also plays a role in the variations children show when

performing motions. Based on our findings, we now propose guidelines for improving motion

recognition algorithms and designing motion applications for children.

7.1 Motion-Based Application Design

Motion-based applications (e.g., exertion games [141, 80]) are becoming increasingly

popular among children as researchers and practitioners are using these applications to target

children’s needs (e.g., increasing the time children spend engaged in physical activity). We

propose two guidelines for designing motion-based applications based on findings from our

dissertation work, that can help improve children’s interactive experiences when using these

applications:

Favor simpler motions. Children are less consistent when performing complex movements

that involve the whole-body. Therefore, designers of motion applications should favor simple

motions that children are familiar with (e.g., upper-body motions requiring a single limb) instead

of more complex whole-body motions (e.g., lunges). However, favoring simple motions may not

always be feasible (e.g., exercise games require some complex exercise motions to ensure

children achieve moderate-to-vigorous physical activity [80, 141]). Designers should provide

opportunities for children to practice complex motions to get them more familiar with how the

motion is performed.

Be flexible about space requirements. Children require more space to perform motions

and are inconsistent in the space they require to move body parts. Therefore, designers of

whole-body applications should customize space requirements to ensure that children have

enough space (with respect to area and volume). Furthermore, designers should program the
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application to verify proper space allowances (e.g., using the depth camera to detect hazards) to

prepare for scenarios in which children make exaggerated motions that will require even more

space. Space verification is important to prevent injury [45].

7.2 Motion Recognition Systems

Motion-based applications often require accurate recognition of motions to ensure

meaningful interactive experiences. Even though these applications are becoming increasingly

popular among children, motion recognition systems are usually trained on adults’ motions [22]

even though my past work has shown that children move differently from adults [64]. In this

dissertation work, we investigated how and why children move differently from adults. Based on

our findings, we now propose a set of design guidelines that future research can adopt to help

tailor motion recognition systems to children’s motion qualities for accurate recognition. The

guidelines proposed from our findings have the potential to improve the performance of motion

recognition systems on children’s motions since prior work has found several correlations

between global-level features and the performance of motion recognition systems on adults’

motions [132] and 2D stroke gesture research has also shown a correlation between articulation

features and children’s stroke gesture recognition performance [120].

Favor looser pointing approaches. In Chapter 4, we showed that how we adapted

template-based stroke gesture recognizers that use one-to-one matching to motions [5]. However,

children make jerky motions and are inconsistent in how they move their body parts to perform

motions (shape error, shape variability). Therefore, we recommend designers of motion

recognition systems for children to use less stringent point-based approaches. For example,

designers can use something similar to the many-to-one approach used in the $P+ stroke gesture

recognizer [133]. This approach accounts for variations along an articulation path by choosing the

best point in a template path that matches a given point in the candidate path, such that multiple

points in the template path can be assigned to one point in the candidate path during recognition.

This approach will be less affected by shape errors and shape variabilities, thus improving

recognition.
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Expect repetitions for non-periodic motions. Children sometimes repeated motions that

could or should have only been performed once, such as Jumping or Swiping, which relates to

their tendency to exaggerate motions. Therefore, we recommend that designers of motion

recognition systems should account for an unpredictable number of repetitions during recognition.

Account for extra limb movements. We saw children often moved extra limbs to perform

motions, which resulted in inconsistencies in their motion performance. Therefore, designers of

motion recognition systems should consider only the joints that users are actively moving

intentionally. Prior work in motion recognition with the filterJoint method found an increase in

recognition accuracy when only the minimum sufficient subset of the joints tracked by the motion

sensor is considered [5]. For example, designers can use the filterJoint method to select all

actively moving joints and use only these joints during recognition to improve accuracy.

Consider directional differences. In Chapter 6, we noted that children sometimes get

confused differentiating their left from their right body parts. Furthermore, children have little to

no conscious control over the direction of movement of upper body parts when performing

motions requiring them to maintain balance. Therefore, designers of motion recognition systems

should always apply normalization steps that can remove confusions from motion instances of the

same type due to directional differences. For example, designers can apply the translation and

rotation normalization steps (e.g., those used in our adaptation of template-based stroke gesture

recognizers [5]) to pre-process joint paths before recognition.

Expect differences in motion performance based on age.1 Findings from our qualitative

analysis show that younger children (< 6 years) perform motions differently from older children,

due to factors such as limited experience performing motions. Therefore, designers of motion

recognition systems should consider accounting for age ranges during recognition. For example,

designers can consider including weights during the matching process of template-based

recognizers such that children’s motions are more likely to be matched to motions from children

1More research is needed to fully understand the effect of age on the variations in how children perform motions.
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with similar age groupings (i.e., matching younger children to younger children and older

children to older children).

Minimize inconsistencies during the collection of motion sets. In Chapter 6, our

qualitative analysis showed that children are inconsistent in their motion performance due to their

unfamiliarity with the motion to be performed. Therefore, we recommend that when researchers

collect motion sets, they should design their study such that each motion is performed at least

twice, with the first motion being practice. By doing this, we expect that children would have

gotten more familiar with the motion to be performed during the second trial, thus minimizing

any potential confusion. Prior research in 2D touchscreen devices has used this approach of

excluding the first trial as a practice to prevent errors arising from children being unfamiliar with

the task performed [150].
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CHAPTER 8
CONTRIBUTIONS AND FUTURE WORK

Here we detail the contributions of this dissertation work to the field of human-computer

interaction and present opportunities for future research to build upon the contributions of this

dissertation.

8.1 Identifying Features That Quantitatively Describe Motions

In addition to Vatavu’s [132] global-level features, we identified a set of joint-level features

that quantitatively describes the properties of joint articulation paths. These joint-level features

were inspired by prior work on relative accuracy features in stroke gesture research [135],

features for tracking mouse paths [56], and features from Laban Movement Analysis [72]. Our

analysis of children’s and adults’ motions using these features showed that they were useful in

quantifying the differences between their motions.

Future research can use our set of features to investigate the differences between motions

for other populations. For example, future research can use these features to investigate the

differences between typically developing children and children with disabilities whose motor

skills may not be as developed (e.g., children experiencing cerebral palsy). Future research can

also use these features to differentiate between the motions of older adults and younger adults.

Older adults (>65 years) experience a decline in their motion abilities [117], so they are likely to

perform motions differently than younger adults. In addition, since our features were effective in

characterizing children’s natural motion qualities, future research can use these features to

evaluate whether the motion qualities of children’s motions generated using style translation

techniques are indicative of the motion qualities of actual children. For example, Dong et al. used

dynamic scaling laws to translate adults’ motions to children’s motions [31]. The effectiveness of

the scaling technique can be evaluated by investigating the similarities between the motion

qualities of the style-translated child and an actual child.

8.2 Understanding how Children Perform Motions

Throughout this dissertation work, we conducted multiple studies and analysis to

understand how children move differently from adults, from which we identified four dimensions:

speed, intensity, smoothness, and coordination. We found that children’s natural motions are
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performed at faster speeds and with higher intensities and are less smooth and less coordinated,

than adults’ motions.

A limitation of our work is that we only considered between-user consistency, which means

that we don’t know how consistent each child is across multiple instances of their motions. Future

research can consider using our articulation features to analyze within-user consistency in one of

two ways: (1) periodic motions, in which the same postures occur multiple times over a brief time

period, such as multiple jumping jacks; or (2) multiple separate repetitions of the same motion

type, at different time points. While Kinder-Gator [3] does include some periodic motions which

we did not analyze here, to the best of our knowledge, there is as yet no dataset of children’s

motions that include multiple separate repetitions.

In addition, our dissertation work only presents initial observations regarding how age

impacts motion performance. Future research will need to quantitatively analyze children’s

motions to better understand the differences between younger and older children’s motion

performance for more conclusive findings. However, there is currently no available dataset of

children’s motions within the age range we considered to enable such an analysis. Future research

can collect more examples of children performing natural motions, to better understand in what

ways factors, such as age, gender, and grade level, affect children’s motion performance.

Another limitation of our work is that our motion data was tracked using the Kinect v1

sensor [89], which was the only available low-cost sensor for tracking whole-body motions at the

time of data collection. However, the Kinect v1 is very prone to tracking issues. There are several

factors that contribute to inaccurate tracking of the Kinect. For example, prior work has noted that

the Kinect v1 has less accuracy tracking joints in the lower body, especially the hip joints and

occluded joints [140]. The Kinect v1 also has a narrower field of view [129], as compared to

sensors, such as the Vicon (Vicon, Oxford, UK), so the user’s height, the placement of the Kinect,

and the users’ distance from the Kinect, are all factors that will affect the tracking accuracy (e.g.,

the accuracy reduces the farther away the user is from the Kinect [48]). Therefore, the Kinect v1

has a high signal-to-noise ratio, which reduces the quality of the motion data due to the noise
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introduced. Although we did account for noise in the data from tracking issues by smoothing the

joint path using an exponential smoothing filter and designing a filterJoint method that can

eliminate joints that move due to tracking issues, we recommend that future research that wants to

investigate users’ motions should use sensors with better tracking accuracy. For example, the

Vicon sensor tracks users’ motions with high enough accuracy that it is often regarded in the

research field as the gold standard [2]. However, the Vicon sensor is not always practical to use

because it is expensive, not portable, and requires the placement of markers on the body, making

it intrusive [79]. Future research in lieu of the Vicon, can use low-cost, markerless sensors with

higher tracking accuracy than the Kinect v1. For example, the most recent version of the Kinect,

known as the Azure Kinect DK [90]), has been shown in the gait literature to achieve higher

tracking accuracy compared to previous versions of the Kinect [2, 129].

8.3 Improving Recognition Rates for Children

Based on the new insights we learned about children’s motion performance, we proposed

design guidelines for improving motion recognition systems for children (Chapter 7). Future

research can adopt these guidelines to tailor motion recognition systems to children’s motion

qualities and evaluate the performance of the system to investigate whether there is an

improvement in performance on children’s motions. If there is an improvement, future research

can further investigate whether there is a correlation between improved recognition rates and

children’s interactive experiences in motion-based applications. Prior work has found that the

precision of motion recognition systems is associated with increased immersion in exertion games

[98]. Furthermore, our work shows that algorithms trained on adults’ motions perform poorly on

children’s motions due to the differences that exist between children and adults. This finding has

important implications on research for other modalities, such as facial expressions and speech.

Similar to motions, recognition systems for these modalities are typically trained on adults. We

know from prior work that children are different from adults with respect to their neuromuscular,

cognitive, and motor abilities [23, 114], thus suggesting that algorithms trained on adults will

likely perform poorly on input from children. Future research can leverage the systematic analysis
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used in this work to understand the differences between children and adults with respect to the

specific modality being considered (e.g., differences in their speech) and subsequently, tailor these

recognition algorithms to children qualities. We also use this opportunity to make a call to action

for future research to consider including populations different from the typically developing adult

population (e.g., children, older adults) during the design of recognition algorithms.

However, it is important to note that we only looked at three types of motion recognition

algorithms in this dissertation work, two of which were template-based algorithms and the last

one being a traditional machine-learning algorithm. Advancements in machine learning have

resulted in the development of algorithms that use neural networks for the automatic recognition

of motions. These algorithms have been shown to achieve higher accuracy compared to

traditional motion recognition algorithms on adults’ motions (see section 2.3.2.2), thus having the

potential to perform better on children’s motions. However, neural networks require large

numbers of samples of data for training [77], meaning that it is not currently feasible for

recognition of children’s motions due to the lack of publicly available child motion datasets. To

use neural networks, future research will need more data from children. However, because

recruiting children for motion experiments can be challenging due to their shorter attention spans

[108], collecting real samples of children performing motions can prove difficult. Researchers can

instead consider generating synthetic data by artificially modeling children’s motions, for

example, using style translation [31] and and motion synthesis [156, 82]. In motion synthesis

research, extensive work has focused on generating human motions from existing data in motion

datasets using approaches that rely on autoregressive models, statistical learning, and deep

learning [156]. To ensure that synthetically generated motions are similar to that of an actual

child performing motions, researchers can use the articulation features presented in this

dissertation work to compare both motions.
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CHAPTER 9
CONCLUSION

Motion-based applications usually include motion recognition algorithms that can

accurately recognize the specific sets of motions that the applications support (i.e., motion sets).

Accurate recognition of motion sets plays an important role in users’ interactive experiences.

However, skeleton-based recognition systems, which accept as input the positions of joints

tracked by a motion sensor in 3D space over time, perform poorly on children’s motions

compared to adults’ motions (Chapter 4). In this dissertation work, we focused on understanding

how children perform motions to tailor motion recognition systems to children’s motion qualities

for accurate recognition of their motions. Specifically, we answered the following research

questions (RQ) in this dissertation:

RQ1. What are the differences between children’s and adults’ motions?

RQ2. What inferences can we make from children’s and adults’ motion differences to help tailor
motion recognition systems to children’s motions?

9.1 Research Question 1- Differentiating Children’s and Adults’ Motions

To answer this research question, we focused on understanding the nuances in how users

articulate motions, which we achieved by identifying the joints that are critical to performing

motions and identifying features that can quantify how the motion is produced to aid in the

analysis of child and adult motion.

9.1.1 Analyzing Joints That are Critical to Motion Performance

We designed a method that can facilitate the investigation of variations in how users move

body parts as a perform motions (Chapter 5). Our method, which we termed filterJoint, filters out

noisy or unimportant joint motion paths using standard deviation and K-means clustering [53]

iteratively to select the set of joints that are actively moving during a motion. We evaluated our

method on a subset of adults motions, using an adaptation of a template-based stroke gesture

recognizer, we developed and found that our method (90.7% [SD = 6.8%) outperformed a

baseline method including all joints (81.4% [SD = 6.9%]). We computed the degree of

agreement, which we defined as the total number of unique joint combinations selected within a

motion type. Our analysis of children’s and adults’ motions using our filterJoint method showed
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that children had a lower degree of agreement compared to adults, especially for complex

movements involving increased coordination among many joints to perform the motion (e.g.,

Jump). Therefore, children are more inconsistent when performing motions compared to adults.

9.1.2 Identifying Features That Quantitatively Describe Users’ Motion Performance

Having established that children are more inconsistent in how they perform motions

compared to adults, we sought to understand how and why children are more inconsistent in their

motion performance. To do this, we quantified the differences between children’s and adults’

motions. Inspired by prior work in stroke gesture research [135], we focused on identifying

features that quantitatively describe how users perform motions. We begin by analyzing

children’s and adults’ walking and running motions using gait features and found that children

move faster and with more energy compared to adults (Chapter 5). However, because gait features

are only applicable to periodic motions, in which the same postures occur multiple times over a

brief time period, we sought to identify features that are generalizable to a broad set of motions.

To do this, we defined a set of 24 articulation features (11 of which are new) that captured

properties related to the themes (e.g., length, time, and effort) (Chapter 6). Our articulation

features comprised 13 features from prior work [132] that describe motions globally based on the

overall posture of the body (global-level features). We also defined a set of 11 new features that

characterize properties of a joint moving in 3D space (joint-level). Analysis of these features on a

subset of children’s and adults’ motions showed that children move differently from adults in

ways that can be quantified with specific posture- and joint-motion-based articulation features. To

support results from our quantitative work, we also qualitatively analyzed children’s motions to

understand how children move differently from adults.

9.2 Research Question 2-Generating Design Guidelines

We looked across the features to identify themes, in which a theme is an inference from the

result (e.g., children require more space compared to adults). From grouping these themes, we

identified four dimensions along which children’s motions differed from adults motions, namely

speed, intensity, smoothness, and coordination (Chapter 6). Children’s natural motions are less
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smooth and less coordinated, and are performed at faster speeds with higher intensities, than

adults’ motions. Based on our findings, we proposed guidelines for designing motion recognition

systems and motion applications for children (Chapter 7). We hope that designers and researchers

can adopt these guidelines to tailor motion recognition systems to children’s motion qualities for

more accurate recognition and improve children’s interactive experiences in motion-based

applications.

9.3 Contributions

The work presented in this dissertation offers several contributions to the field of

Human-Computer Interaction, as detailed in Chapter 8. First, we established a set of features that

quantify the differences between children’s and adults’ motions. We also informed an

understanding of how children perform motions by identifying the dimensions along which

children move differently from adults. We presented guidelines for tailoring motion-based

applications to children’s motion qualities to accurately recognize children’s motions.
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APPENDIX B
KINDER-GATOR DATASET

Table B-1. Motions performed by participants in the Kinder-Gator dataset for which the motion
was demonstrated to the participant by a researcher during the collection of the dataset

ID Agegroup Motions
106 Child Forward lunge, Put your

hands on your hips and lean
to the side

290 Child Raise your arm to one side,
Bend your knee, Swipe across
an imaginary screen in front
of you, Fly like a bird, Point
at the camera, Forward lunge

337 Child Bend your knee, Lift your leg
to one side, Make the letter
(M, K) with your body

342 Child Make the letter (A, K) with
your body

888 Adult Forward lunge
921 Adult Forward lunge, Make the let-

ter M with your body
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APPENDIX C
KINDER-GATOR DATASET: ADULT DEMOGRAPHIC QUESTIONNAIRE

Participant #:

1. Sex [Male][Female]

2. Age years

3. Level of Education Finished [High school][Some college][Undergraduate de-

gree][Graduate degree][Other:]

4. Handedness [Left][Right][Both]

Please tell me about which devices you own or have in your house:

I own one My family owns one I’ve never heard of this

XBox Kinect

Nintendo Wii or Wii U

Sony PlayStation EyeToy

Please tell me about your use of the following types of devices:

Tried it once

or twice

I use it

sometimes

I use it daily

or often

I have never

used one

I have never

heard of it

XBox Kinect

Nintendo Wii or

Wii U

Sony PlayStation

EyeToy
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APPENDIX D
KINDER-GATOR DATASET: CHILD DEMOGRAPHIC QUESTIONNAIRE

Participant #:

1. Sex [Male][Female]

2. Age years

3. Highest Grade Level Completed

4. Handedness [Left][Right][Both]

Please tell me about which devices you own or have in your house:

I own one My family owns one I’ve never heard of this

XBox Kinect

Nintendo Wii or Wii U

Sony PlayStation EyeToy

Please tell me about your use of the following types of devices:

Tried it once

or twice

I use it

sometimes

I use it daily

or often

I have never

used one

I have never

heard of it

XBox Kinect

Nintendo Wii or

Wii U

Sony PlayStation

EyeToy
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APPENDIX E
FILTERJOINT METHOD: PSEUDOCODE

Step 1: Apply the filterJoint method to both the test motion C and all the motions in the

training set T, where each motion has N 3D joints. Note: This method is only called if using the

filterJoint method. When using the baseline method, skip this step. The filterJoint method relies

on a threshold, thresh which is the average absolute difference between the centroids of the

clusters of all motions in the dataset (i.e., the THRESHOLD method is only called once).

FILTERJOINT(C, T)

SD ← COMPUTE-STANDARD-DEVIATION(C)
A ← GET-ACTIVE-JOINTS(SD)
for i from 0 to N do

if i not in A then
REMOVE(C, ji)
REMOVE(t, ji) foreach motion t in T

return <C,T>

COMPUTE-STANDARD-DEVIATION(A)

SD ← empty-list
foreach joint ji

for i ≥ 0 in C do
ji ← EXPONENTIAL-MOVING-AVERAGE( ji)
S ← STANDARD-DEVIATION( ji)
APPEND(SD, S)

return <SD>

GET-ACTIVE-JOINTS(A)

active joints ← empty-list
inactive joints ← empty-list
<centroid1, centroid2, labels, index> ← KMEANS(A)

for p from 0 to |A| step 1 do
if labelsp = index then

APPEND(active, p)
else

APPEND(inactive, p)
thresh ← THRESHOLD()
if |centroid0 – centroid1| < thresh then

<centroid0, centroid1, labels, index> ← KMEANS(inactive)
for q from 0 to |inactive| step 1 do

if labelsq = index then
APPEND(active, inactiveq)

return <active>
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KMEANS(A)

C ← empty-list
C[0] ← max(A)
C[1] ← min(A)
K ← kmeans(2, centroids=C) [53]
clusters ← K.clusters(A)
labels ← K.labels(A)
centroids ← clusters.centroid
index ← 0 if centroids[0] < centroids[1]

index ← 1
return <centroids[0],centroids[1],labels, index>

THRESHOLD()

thresholds ← empty-list
thresh ← 0
foreach motion d in FULL-DATASET do

SD ← STANDARD-DEVIATION(d)
<centroid0, centroid1, labels, index> ← KMEANS(SD)
difference ← | centroid0 – centroid1 |
APPEND(thresholds, difference)

average ← SUM(thresholds)/|FULL-DATASET|
return <average>

Step 2: Apply the normalization step. This step is subdivided into four steps: resampling,

rotation, scaling, restore-orientation, and scaling. These steps were adapted from the $3 stroke

gesture recognition algorithm [69], protractor3D [70], and protractor [76].

NORMALIZATION(C, T)

C’ ← C
p ← 32
foreach joint ji for i ≥ 0 in C do

norm ji ← RESAMPLE(ji, p) [69]
norm ji ← ROTATE-TO-ORIGIN(norm ji) [69, 76]
norm ji ← SCALE(norm ji) [69]
norm ji ← TRANSLATE-TO-ORIGIN(norm ji) [69]
APPEND(C’, ji)

T’ ← T
foreach motion t in T do

t’ ← t
foreach joint ji in t do

norm ji ← RESAMPLE(ji, p)
norm ji ← ROTATE-TO-ORIGIN(norm ji)
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norm ji ← SCALE(norm ji)
norm ji ← TRANSLATE-TO-ORIGIN(norm ji)
APPEND(t’, norm j

i)
APPEND(T’, norm ji)

return < C’, T’>

RECOGNIZE(C’, T’)

b ← + inf
foreach motion t’ in T’ do

d ← 0
foreach joint jiC′ ,j

i
t ′ in C’, T’ respectively do

rt ← OPTIMAL-ALIGNMENT(jiC′ ,j
i
t ′) [69]

rc ← OPTIMAL-ALIGNMENT(jit ′ ,j
i
C′) [69]

flip ji ← FLIP(jiC′)
flip rt ← OPTIMAL-ALIGNMENT(flip ji, jit ′)
flip rc ← OPTIMAL-ALIGNMENT(jit ′ , flip ji)
e1 ← PATH-DISTANCE(jiC′ ,rt )
e2 ← PATH-DISTANCE(rc,jit ′)
e3 ← PATH-DISTANCE(flip ji,flip rt )
e4 ← PATH-DISTANCE(flip rc,jit ′)
d+= min(e1,e2,e3,e4)

if d < b then
b ← d
t” ← t’

return < t”>

FLIP(A)

for i from 0 to |A| step 1 do
A[i]x ← - A[i]x

return <A>

PATH-DISTANCE(A, B)

d ← 0
for i from 0 to |A| step 1 do

d += EUCLIDEAN-DISTANCE(Ai, Bi)
return <d>
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APPENDIX F
FILTERJOINT METHOD RESULTS

Table F-1. List of Actively Moving Joints Selected by our filterJoint Method. Adults are more
consistent than children especially for motions that require less joints to perform the
movement (e.g., raise your hand and raise your arm to one side)

ID Joints Selected
Bend your knee

Adult
565 FootLeft, KneeLeft, HandLeft, WristLeft, ElbowLeft, HandRight, Shoulder-

Left, AnkleLeft, Head, WristRight, ShoulderRight, ShoulderCenter, HipRight,
HipCenter, HipLeft, Spine

577 KneeRight, FootRight, AnkleRight, HandLeft, WristLeft, ElbowLeft,
KneeLeft, Head, HandRight, ShoulderLeft

604 KneeRight, FootRight, AnkleRight, HandLeft, WristLeft, ElbowLeft, Shoul-
derRight, ElbowRight, WristRight, Head, HandRight, ShoulderCenter, Shoul-
derLeft, Spine, HipRight, HipCenter, HipLeft

734 KneeRight, AnkleRight, FootRight, HandRight, WristRight, ElbowRight,
HipRight, ShoulderRight

876 KneeRight, FootRight, AnkleRight, HandRight, Head, ShoulderLeft,
HipRight, ShoulderRight, HipCenter, Spine, HipLeft, ShoulderCenter, El-
bowRight, WristRight

888 KneeRight, FootRight, AnkleRight, HandRight, FootLeft, HipRight, HipLeft,
HipCenter, WristRight, Spine, ShoulderRight

921 FootRight, KneeRight, AnkleRight, HandRight, WristRight
934 FootRight, AnkleRight, KneeRight, WristLeft, HandLeft, ElbowLeft,

HipRight, Head, ShoulderLeft, HipCenter, Spine, ShoulderCenter, HipLeft,
ShoulderRight, ElbowRight, HandRight

970 KneeRight, AnkleRight, FootRight
976 FootRight, AnkleRight, KneeRight, HandLeft, Head, WristLeft, ShoulderLeft,

ShoulderRight, ShoulderCenter, ElbowLeft, ElbowRight, Spine, HipCenter,
HipLeft, HipRight, WristRight, HandRight

Child
103 KneeRight, AnkleRight, FootRight, HandRight, WristRight, ElbowRight,

ShoulderCenter, HandLeft, WristLeft, HipLeft, ShoulderRight, ShoulderLeft,
Head, HipCenter

106 HandRight, WristRight, ElbowRight, FootRight, AnkleRight
169 FootRight, AnkleRight, KneeRight, HipRight, Head, HipLeft, HipCenter,

WristRight, HandLeft, WristLeft, Spine, ElbowRight, HandRight, Shoulder-
Left, ShoulderCenter

290 FootRight, KneeRight, AnkleRight, Head, ShoulderRight, ShoulderCenter,
HandRight, ShoulderLeft, HipLeft, HipRight, Spine, HipCenter, ElbowRight,
WristRight, HandLeft, KneeLeft, WristLeft, ElbowLeft

337 HandLeft, WristLeft, KneeRight, AnkleRight, FootRight, ElbowLeft, Han-
dRight, WristRight, ShoulderLeft, ElbowRight, Head, ShoulderRight, Shoul-
derCenter, HipCenter, HipLeft, HipRight, Spine
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Table F-1. Continued
ID Joints Selected
342 HandRight, HandLeft, WristLeft, WristRight
474 AnkleRight, FootRight, KneeRight, WristRight, HandRight, FootLeft, Head,

HandLeft, WristLeft
595 KneeRight, AnkleRight, FootRight, HandRight, HandLeft, WristLeft,

WristRight, ElbowLeft, ElbowRight, ShoulderRight, Head
644 FootRight, KneeRight, AnkleRight, HandLeft, WristLeft, HandRight,

WristRight, ElbowLeft, ElbowRight, HipLeft, ShoulderLeft, HipCenter,
HipRight, Spine, Head, ShoulderCenter, ShoulderRight, KneeLeft

723 KneeRight, AnkleRight, FootRight, HandRight, WristRight, HandLeft,
WristLeft, ElbowRight

Bow
Adult

565 Head, ShoulderCenter, ShoulderLeft, HandLeft, ShoulderRight, HandRight,
HipRight, WristRight, HipLeft, Spine, HipCenter, WristLeft, ElbowRight, El-
bowLeft, KneeLeft, KneeRight

577 Head, HandRight, ShoulderCenter, WristRight, HandLeft, ShoulderRight,
WristLeft, ShoulderLeft, HipRight, HipLeft, HipCenter, KneeLeft, KneeRight,
Spine, ElbowRight, ElbowLeft

604 Head, ShoulderCenter, ShoulderLeft, ShoulderRight, HipLeft, HipRight,
Spine, HipCenter, HandLeft, WristLeft, HandRight, KneeRight, WristRight,
KneeLeft, ElbowLeft

734 Head, ShoulderCenter, ShoulderLeft, ShoulderRight, HipLeft, HipRight,
Spine, HipCenter, ElbowLeft, WristLeft, HandLeft, ElbowRight, HandRight,
WristRight

876 Head, ShoulderCenter, HandRight, ShoulderRight, ShoulderLeft, WristRight,
HandLeft, HipLeft, HipRight, Spine, HipCenter, WristLeft, ElbowRight,
KneeRight, KneeLeft, ElbowLeft

888 Head, ShoulderCenter, ShoulderRight, ShoulderLeft, HipLeft, HipRight,
HandRight, WristRight, HipCenter, KneeLeft, WristLeft, HandLeft, Spine,
KneeRight

921 Head, ShoulderCenter, ShoulderRight, ShoulderLeft, HipRight, ElbowLeft,
Spine, HipLeft, HipCenter, ElbowRight, HandLeft, WristLeft, KneeRight,
WristRight

934 Head, ShoulderCenter, ShoulderRight, ShoulderLeft, HandRight, WristRight,
HandLeft, HipRight, HipLeft, ElbowRight, HipCenter, Spine, WristLeft,
KneeLeft, KneeRight

970 Head, ShoulderCenter, ShoulderRight, ShoulderLeft, HandLeft, WristLeft,
HipLeft, HipRight, HipCenter, Spine, ElbowLeft, HandRight, WristRight, El-
bowRight, KneeRight, KneeLeft
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Table F-1. Continued
ID Joints Selected
976 Head, ShoulderCenter, ShoulderRight, ShoulderLeft, HandLeft, HandRight,

HipRight, Spine, HipLeft, HipCenter, WristLeft, WristRight, KneeLeft,
KneeRight, ElbowRight, ElbowLeft

Child
103 Head, ShoulderCenter, HandLeft, ShoulderLeft, AnkleLeft, WristLeft, Shoul-

derRight, FootLeft, KneeLeft, HandRight, ElbowLeft, WristRight, HipLeft,
Spine, HipRight, HipCenter

106 HandRight, Head, WristRight, ShoulderCenter, ElbowRight, HandLeft,
WristLeft, HipLeft, ElbowLeft, HipRight, ShoulderRight, HipCenter, Spine,
ShoulderLeft, KneeLeft, KneeRight

169 Head, ShoulderCenter, HandLeft, WristLeft, HipRight, HipLeft, HandRight,
ShoulderLeft, HipCenter, WristRight, Spine, ElbowLeft, ShoulderRight, El-
bowRight, KneeRight, KneeLeft

290 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, Head, Shoulder-
Center

337 HandLeft, WristLeft, Head, ShoulderCenter, ElbowLeft, ShoulderLeft, Han-
dRight, WristRight, ShoulderRight, ElbowRight, Spine, HipCenter, HipLeft,
HipRight

342 WristLeft, HandLeft, Head, ShoulderCenter, ShoulderRight, WristRight, Han-
dRight, ElbowLeft, ElbowRight, HipRight, HipLeft, ShoulderLeft, HipCenter,
Spine, KneeRight

474 Head, ShoulderCenter, HipRight, ShoulderRight, HandLeft, HipLeft, Han-
dRight, Spine, HipCenter, WristRight, ShoulderLeft, WristLeft, ElbowRight,
ElbowLeft, KneeLeft, KneeRight

595 Head, ShoulderCenter, HandLeft, WristLeft, ShoulderRight, HipRight,
HipLeft, Spine, HipCenter, ShoulderLeft, KneeLeft, HandRight, ElbowLeft,
WristRight, ElbowRight

644 HandRight, Head, ShoulderCenter, WristRight, ShoulderLeft, HandLeft,
ShoulderRight, WristLeft, ElbowLeft, HipLeft, HipRight, Spine, HipCenter,
ElbowRight

723 Head, ShoulderCenter, ShoulderRight, ShoulderLeft, Spine, HipCenter,
HipLeft, HipRight, HandRight, WristRight, HandLeft, WristLeft, KneeLeft,
KneeRight, ElbowRight, ElbowLeft

Do a forward lunge
Adult

565 FootRight, AnkleRight, KneeRight, HandRight, Head, ShoulderCenter, Shoul-
derRight, WristRight, ElbowRight, ShoulderLeft, Spine, ElbowLeft, Han-
dLeft, WristLeft, HipCenter, HipRight, HipLeft

577 FootRight, AnkleRight, KneeRight, HandLeft, HandRight, WristLeft,
WristRight, ShoulderRight, ElbowLeft, ShoulderCenter, ElbowRight, Head,
ShoulderLeft, Spine, HipLeft, HipCenter, HipRight
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Table F-1. Continued
ID Joints Selected
604 HandLeft, WristLeft, KneeRight, FootRight, AnkleRight, ShoulderLeft,

Head, ShoulderCenter, ElbowLeft, ShoulderRight, Spine, HipLeft, HipCenter,
FootLeft, HandRight, HipRight

734 KneeRight, Head, FootRight, ShoulderCenter, AnkleRight, ShoulderLeft,
ShoulderRight, Spine, ElbowRight, ElbowLeft, HandRight, WristRight, Hip-
Center

876 FootRight, AnkleRight, KneeRight, HandRight, Head, WristRight, Shoulder-
Center, HandLeft, ShoulderLeft, ShoulderRight, ElbowLeft, WristLeft, El-
bowRight, Spine

888 KneeRight, FootRight, AnkleRight, HandRight, WristRight, ElbowRight,
ShoulderRight, Head, ShoulderCenter, HipRight, Spine, HipCenter, HipLeft,
ShoulderLeft, KneeLeft, ElbowLeft

921 KneeRight, ElbowLeft, WristLeft, ShoulderLeft, HandLeft, Head, Shoulder-
Center, ShoulderRight, Spine, WristRight, AnkleRight, HipLeft, HandRight,
HipCenter, ElbowRight, FootRight, HipRight

934 KneeLeft, FootLeft, AnkleLeft, Head, ShoulderLeft, ShoulderCenter, Spine,
ShoulderRight, ElbowLeft, ElbowRight, HipCenter, WristRight, HandRight,
HipLeft, HipRight, WristLeft, HandLeft

970 KneeRight, AnkleRight, FootRight, HandRight, WristRight, HandLeft, El-
bowRight, WristLeft, ShoulderCenter, ShoulderRight, Head, ShoulderLeft, El-
bowLeft, Spine, HipCenter, HipLeft, HipRight

976 KneeRight, Head, ShoulderCenter, FootRight, AnkleRight, ShoulderLeft, El-
bowLeft, ShoulderRight, Spine, WristLeft, HipLeft, HipCenter, HipRight,
HandLeft, WristRight, ElbowRight, HandRight

Child
103 Head, ShoulderCenter, ShoulderRight, ShoulderLeft, Spine, ElbowLeft,

KneeLeft, ElbowRight, HipCenter, FootLeft, AnkleLeft, HipLeft, HipRight,
WristLeft, HandLeft, WristRight, HandRight

106 FootRight, AnkleRight, KneeRight, HandRight, WristRight, ElbowRight,
HipRight, HipLeft, HipCenter, ShoulderRight, Spine, ShoulderCenter, El-
bowLeft, WristLeft, ShoulderLeft, HandLeft, Head, KneeLeft

169 KneeRight, FootRight, AnkleRight, ShoulderLeft, Head, ShoulderCenter, El-
bowLeft, Spine, HipLeft, WristLeft, ShoulderRight, HipCenter, HandLeft

290 AnkleLeft, FootLeft AnkleLeft, FootLeft, HandLeft, Head, AnkleRight,
WristLeft, KneeLeft, FootRight, ShoulderLeft, KneeRight, ElbowLeft

337 HandRight, HandLeft, WristRight, WristLeft, ElbowRight, ElbowLeft
342 HandLeft, WristLeft, AnkleLeft, KneeLeft, ElbowLeft, FootLeft, ElbowRight,

HandRight, ShoulderLeft, WristRight, ShoulderCenter, ShoulderRight, Head,
Spine, HipLeft, HipCenter, HipRight, FootRight

474 ShoulderCenter, Head, ShoulderLeft, KneeRight, ShoulderRight, AnkleLeft,
ElbowLeft, Spine, HandLeft, AnkleRight, WristRight, HandRight, WristLeft,
HipCenter, FootRight, HipLeft, HipRight, ElbowRight, FootLeft
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Table F-1. Continued
ID Joints Selected
595 HandLeft, WristLeft, ElbowRight, ShoulderRight, AnkleLeft, Head, Shoul-

derCenter, HandRight, ShoulderLeft, WristRight, ElbowLeft, Spine, FootLeft,
KneeRight, HipRight, HipCenter, HipLeft

644 FootRight, AnkleRight, KneeRight, Head, ShoulderCenter, ShoulderRight,
Spine, ShoulderLeft, ElbowRight, HipCenter, HipRight, HipLeft, ElbowLeft,
HandLeft, WristRight, WristLeft, HandRight

723 Head, ShoulderRight, ShoulderCenter, KneeRight, ShoulderLeft, ElbowRight,
Spine, WristRight, HandRight, HipCenter, HipLeft, HipRight, ElbowLeft, An-
kleRight, WristLeft, FootRight, HandLeft, AnkleLeft, KneeLeft

Jump
Adult

565 HandRight, WristRight, ElbowRight, ShoulderRight, ElbowLeft, Shoulder-
Left, Head, ShoulderCenter, HandLeft, KneeLeft, Spine, HipRight, WristLeft,
HipCenter, KneeRight, HipLeft, AnkleRight, AnkleLeft

577 KneeRight, HandLeft, KneeLeft, WristLeft, ShoulderLeft, ShoulderCenter,
Head, ElbowRight, ShoulderRight, ElbowLeft, AnkleRight, Spine, HandRight,
WristRight, HipCenter, HipLeft, HipRight, FootRight

604 HandLeft, WristLeft, Head, ShoulderCenter, HandRight, ElbowLeft, Shoul-
derLeft, WristRight, ShoulderRight, ElbowRight

734 Head, ShoulderCenter, ShoulderRight, ShoulderLeft, ElbowRight, HandRight,
ElbowLeft, WristRight, HandLeft, WristLeft, Spine, HipLeft, HipCenter,
HipRight, KneeLeft, KneeRight, AnkleRight, AnkleLeft

876 HandRight, HandLeft, WristRight, KneeLeft, WristLeft, KneeRight, Shoul-
derLeft, ShoulderCenter, Head, ElbowRight, ShoulderRight, ElbowLeft

888 HandLeft, WristLeft, HandRight, KneeRight, ElbowLeft, WristRight,
KneeLeft, ShoulderLeft, ShoulderCenter, Head, ElbowRight

921 HandLeft, WristLeft, ElbowLeft, HandRight, WristRight, KneeRight, Shoul-
derLeft, ShoulderCenter, KneeLeft, ShoulderRight, Head, ElbowRight, Spine,
HipRight, HipCenter, HipLeft

934 WristLeft, HandLeft, Head, ElbowLeft, ShoulderCenter, HandRight, Shoul-
derLeft, ShoulderRight, ElbowRight, WristRight, Spine, HipLeft, HipCenter,
HipRight, KneeLeft, KneeRight

970 HandRight, HandLeft, WristRight, WristLeft, ElbowLeft, ElbowRight,
KneeLeft, Head, ShoulderCenter, ShoulderRight, Spine, ShoulderLeft

976 HandLeft, HandRight, WristLeft, WristRight
Child

103 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, ElbowLeft,
HipLeft, ShoulderRight, HipCenter, ShoulderLeft, HipRight, Spine, Head,
ShoulderCenter

106 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, ElbowLeft, Head,
FootRight, AnkleRight, ShoulderCenter, Spine, ShoulderLeft, ShoulderRight,
HipCenter, HipLeft, HipRight
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Table F-1. Continued
ID Joints Selected
169 HandRight, WristRight, KneeLeft, ElbowRight, HandLeft, KneeRight,

WristLeft, FootLeft, FootRight, ElbowLeft, AnkleLeft, AnkleRight
290 HandRight, WristRight, HandLeft, FootRight, WristLeft, AnkleRight, El-

bowRight, ElbowLeft, KneeRight, Spine, ShoulderLeft, HipRight, Shoulder-
Right, ShoulderCenter, HipCenter, HipLeft, Head

337 HandLeft, WristLeft, FootRight, AnkleRight, KneeRight, HandRight, Shoul-
derRight, Head

342 HandRight, HandLeft, WristRight, WristLeft, ElbowRight, ElbowLeft, Head
474 HandLeft, WristLeft, HandRight, WristRight, ElbowRight, ElbowLeft, Shoul-

derCenter, ShoulderRight, Head, ShoulderLeft, Spine, HipCenter, HipLeft,
HipRight, KneeRight, KneeLeft

595 HandRight, HandLeft, WristRight, WristLeft, ElbowLeft, ElbowRight, Shoul-
derLeft, FootRight

644 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, ElbowLeft, Head,
ShoulderRight, ShoulderLeft, HipLeft, Spine, KneeLeft, HipCenter, HipRight,
ShoulderCenter, KneeRight

723 HandRight, WristRight, HandLeft, ElbowRight, WristLeft, FootRight, An-
kleRight, ElbowLeft, ShoulderRight, HipRight, Spine, Head, HipCenter,
HipLeft, ShoulderCenter, KneeRight, ShoulderLeft, KneeLeft

Kick a ball as hard as you can
Adult

565 HandRight, WristRight, AnkleRight, FootRight, KneeRight
577 FootRight, AnkleRight, HandLeft, WristLeft, KneeRight
604 FootRight, HandLeft, AnkleRight, WristLeft, ElbowLeft, KneeRight, Han-

dRight, WristRight, ShoulderRight, ShoulderLeft, HipRight, ElbowRight,
HipCenter, HipLeft, Spine, ShoulderCenter, Head

734 HandLeft, WristLeft, FootRight, AnkleRight
876 FootRight, AnkleRight, KneeRight, HandLeft, WristLeft, FootLeft, An-

kleLeft, HandRight, KneeLeft, WristRight
888 FootRight, AnkleRight, KneeRight
921 FootRight, AnkleRight, KneeRight
934 FootRight, HandLeft, AnkleRight, WristLeft, KneeRight, AnkleLeft,

FootLeft, ElbowLeft, KneeLeft
970 FootRight, AnkleRight, HandRight, KneeRight, WristRight, HandLeft, El-

bowRight, AnkleLeft, FootLeft, WristLeft, KneeLeft, HipRight, ElbowLeft,
HipLeft, ShoulderRight, HipCenter

976 FootRight, AnkleRight, HandLeft, KneeRight, WristLeft, HandRight,
WristRight, ElbowRight

Child
103 HandRight, HandLeft, FootRight, WristRight, WristLeft, AnkleRight,

KneeRight, ElbowRight, ElbowLeft, Head, ShoulderLeft, ShoulderCenter,
ShoulderRight, HipRight, HipLeft, HipCenter, Spine, KneeLeft

106 FootRight, AnkleRight, HandRight, KneeRight, WristRight, HandLeft, El-
bowRight, WristLeft, HipRight
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Table F-1. Continued
ID Joints Selected
169 FootRight, AnkleRight, HandRight, WristRight, KneeRight, ElbowRight
290 FootRight, AnkleRight, KneeRight, HandRight, WristRight, ElbowRight,

ShoulderRight, HandLeft, WristLeft, HipRight, Spine, Head, ShoulderCenter,
HipCenter

337 FootRight, AnkleRight, HandLeft, HandRight, WristLeft, WristRight, El-
bowLeft, ShoulderLeft, ElbowRight, ShoulderCenter, KneeRight, Shoulder-
Right, Head, Spine, HipCenter, HipRight

342 HandRight, WristRight, HandLeft, WristLeft, FootRight, AnkleRight, El-
bowRight, KneeRight, ElbowLeft

474 FootRight, AnkleRight, HandLeft, WristLeft, HandRight, WristRight, El-
bowLeft, ElbowRight, KneeRight, ShoulderLeft, ShoulderCenter, Shoulder-
Right, Head, Spine

595 AnkleRight, FootRight, KneeRight, Head, HandRight, WristRight, Shoulder-
Right, ElbowRight, ShoulderCenter, HandLeft

644 FootRight, AnkleRight, HandLeft, WristLeft, KneeRight, ElbowLeft, Han-
dRight, Head, WristRight, ShoulderRight, ShoulderCenter, ShoulderLeft, El-
bowRight

723 FootRight, AnkleRight, HandRight, WristRight, KneeRight, ElbowRight,
HipRight, ShoulderRight

Lift your leg to one side
Adult

565 FootRight, AnkleRight, KneeRight, HandRight, WristRight, HandLeft,
WristLeft, ShoulderCenter, ElbowLeft, ElbowRight, Head, ShoulderLeft,
Spine, ShoulderRight, HipCenter, HipRight, HipLeft, KneeLeft

577 FootRight, AnkleRight, KneeRight
604 FootRight, AnkleRight
734 FootRight, AnkleRight, KneeRight
876 FootRight, AnkleRight, KneeRight
888 FootRight, AnkleRight, KneeRight, HandLeft, WristLeft, HandRight, Shoul-

derCenter, ShoulderRight, ShoulderLeft, ElbowLeft, Head, WristRight
921 FootRight, AnkleRight, KneeRight, ShoulderCenter, Head, ShoulderLeft,

ShoulderRight, ElbowLeft, WristLeft, Spine, HandLeft, ElbowRight, HipCen-
ter, HipLeft, HipRight

934 FootRight, AnkleRight
970 FootRight, AnkleRight, KneeRight
976 FootRight, AnkleRight, HandLeft

Child
103 FootRight, AnkleRight, KneeRight, HandLeft, WristLeft, ElbowLeft, Head,

ShoulderCenter
106 FootRight, AnkleRight
169 FootRight, AnkleRight, HandLeft, WristLeft, KneeRight, HandRight,

WristRight
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Table F-1. Continued
ID Joints Selected
290 FootRight, AnkleRight, HandLeft, HandRight, WristRight, WristLeft,

KneeRight, Head, ElbowLeft, ElbowRight, ShoulderCenter, ShoulderRight,
ShoulderLeft, Spine, HipRight, HipCenter

337 HandLeft, WristLeft, ElbowLeft, FootRight, HandRight, AnkleRight,
WristRight, ElbowRight, KneeRight, ShoulderLeft, ShoulderRight, Shoulder-
Center, Head

342 FootRight, AnkleRight, HandRight, WristRight, KneeRight, ElbowRight
474 FootRight, AnkleRight, HandLeft, WristLeft, KneeRight, ElbowLeft
595 FootRight, AnkleRight, KneeRight
644 FootRight, AnkleRight, KneeRight
723 FootRight, AnkleRight, KneeRight

Point at the camera
Adult

565 HandRight, WristRight
577 HandRight, WristRight
604 HandRight, WristRight, ElbowRight
734 HandRight, WristRight
876 HandRight, WristRight
888 HandRight, WristRight
921 HandRight, WristRight
934 HandRight, WristRight
970 HandRight, WristRight, ElbowRight
976 HandRight, WristRight, ElbowRight

Child
103 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, ElbowLeft
106 HandRight, WristRight, ElbowRight, ShoulderRight, ElbowLeft
169 HandRight, WristRight, ElbowRight, ShoulderRight, KneeLeft, HandLeft,

WristLeft, ElbowLeft, ShoulderLeft
290 HandRight, WristRight, ElbowRight, HandLeft, WristLeft, ShoulderRight
337 HandLeft, WristLeft, HandRight, WristRight, ElbowLeft, ElbowRight, Shoul-

derRight, ShoulderLeft, Head, ShoulderCenter
342 HandRight, WristRight, HandLeft, WristLeft, ElbowLeft, ElbowRight, Shoul-

derLeft, ShoulderRight
474 HandRight, WristRight
595 HandRight, WristRight
644 HandRight, WristRight, ElbowRight
723 HandRight, WristRight, ElbowRight

Punch
Adult

565 HandRight, WristRight
577 HandRight, WristRight
604 HandLeft, HandRight, WristRight, WristLeft, FootRight, AnkleRight,

KneeRight, ElbowRight, HipRight, ShoulderRight, HipCenter, Head, Spine,
ShoulderCenter
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ID Joints Selected
734 HandRight, WristRight, HandLeft, ElbowRight, WristLeft
876 HandRight, WristRight, HandLeft, ElbowRight
888 HandRight, WristRight
921 HandLeft, WristLeft, ElbowLeft
934 HandRight, WristRight, ElbowRight
970 HandRight, WristRight, HandLeft, ElbowRight, WristLeft, AnkleLeft,

FootLeft, ShoulderRight, HipRight, KneeLeft, ShoulderCenter, Head, Hip-
Center, ElbowLeft, Spine, ShoulderLeft, HipLeft

976 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, ElbowLeft, Shoul-
derRight, FootLeft, Head, AnkleLeft, ShoulderCenter, Spine, ShoulderLeft,
KneeLeft, HipRight, HipCenter

Child
103 HandRight, HandLeft, WristRight, WristLeft, ElbowRight
106 HandLeft, WristLeft, HandRight, WristRight, ElbowLeft, ElbowRight, Shoul-

derLeft, ShoulderRight
169 HandRight, WristRight, ElbowRight
290 HandRight, WristRight, ElbowRight, HandLeft, WristLeft
337 HandRight, WristRight, FootRight, AnkleRight, ElbowRight, KneeRight,

WristLeft, HandLeft
342 HandRight, WristRight, ElbowRight
474 HandRight, WristRight
595 HandRight, WristRight, FootLeft, AnkleLeft, HandLeft, ElbowRight,

WristLeft, ShoulderRight, Head, ElbowLeft, KneeLeft, ShoulderCenter,
ShoulderLeft, Spine, HipRight, HipCenter, HipLeft

644 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, ShoulderRight,
KneeRight, ElbowLeft, Head

723 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, ElbowLeft,
AnkleRight, ShoulderRight, FootRight, HipRight, ShoulderCenter, Spine,
KneeRight, Head, HipCenter

Put your hands on your hips and lean to the side
Adult

565 HandRight, WristRight, Head, ElbowRight, ShoulderCenter, ShoulderLeft,
ShoulderRight

577 Head, HandRight, HandLeft, WristLeft, ElbowLeft, WristRight, Shoul-
derCenter, ElbowRight, ShoulderLeft, ShoulderRight, HipRight, Spine,
KneeRight, HipCenter, KneeLeft

604 Head, HandRight, ShoulderLeft, ShoulderCenter, WristRight, ShoulderRight,
ElbowRight, HandLeft, ElbowLeft, WristLeft, Spine, HipCenter, HipLeft,
HipRight

734 Head, ShoulderLeft, ElbowLeft, ShoulderCenter, HandLeft, WristLeft, Han-
dRight, ElbowRight, ShoulderRight, WristRight, HipRight, HipCenter,
HipLeft, Spine, KneeLeft, KneeRight
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ID Joints Selected
876 Head, HandRight, ShoulderCenter, HandLeft, ShoulderLeft, ElbowLeft,

WristLeft, WristRight, ShoulderRight, ElbowRight, HipRight, Spine, HipCen-
ter, FootRight, HipLeft

888 Head, HandRight, ElbowLeft, HandLeft, WristLeft, WristRight, ShoulderLeft,
ShoulderCenter, ElbowRight, ShoulderRight, HipRight

921 Head, ShoulderCenter, ShoulderLeft, ShoulderRight, ElbowLeft, HandLeft,
ElbowRight, WristLeft, WristRight, HandRight, HipRight, Spine, HipCenter,
KneeLeft

934 Head, ShoulderRight, HandRight, ShoulderCenter, ShoulderLeft, ElbowRight,
ElbowLeft, HandLeft, WristRight, WristLeft, HipRight, Spine, HipCenter,
HipLeft, KneeLeft, KneeRight

970 HandRight, Head, WristRight, ShoulderCenter, ShoulderRight, ElbowRight,
HandLeft, ShoulderLeft, ElbowLeft, WristLeft, Spine, HipRight, HipCenter,
HipLeft

976 HandLeft, WristLeft, ElbowLeft, HandRight, WristRight, HipRight, KneeLeft,
AnkleLeft, HipLeft, HipCenter, ElbowRight, FootLeft, Spine, ShoulderRight,
KneeRight, Head

Child
103 Head, WristLeft, HandLeft, ElbowLeft, ShoulderCenter, ShoulderRight, El-

bowRight, ShoulderLeft, WristRight, HandRight, Spine, FootLeft, HipCenter,
HipLeft

106 HandRight, WristRight, HandLeft, WristLeft, ElbowLeft, Head, ElbowRight,
ShoulderRight, ShoulderCenter, ShoulderLeft

169 Head, ElbowLeft, HandLeft, HandRight, WristLeft, WristRight, Shoulder-
Center, ShoulderLeft, ShoulderRight, ElbowRight, HipRight, HipCenter,
Spine, KneeRight, HipLeft, KneeLeft

290 HandRight, WristRight, Head, ElbowRight, HandLeft, ElbowLeft, Shoulder-
Right, WristLeft, ShoulderLeft, ShoulderCenter, HipRight, KneeLeft, HipCen-
ter, Spine, KneeRight, HipLeft

337 HandLeft, WristLeft, ElbowRight, WristRight, HandRight, ElbowLeft, Shoul-
derRight, Head, ShoulderCenter, ShoulderLeft, Spine, HipCenter, HipRight,
HipLeft, FootLeft, AnkleLeft

342 Head, HandLeft, WristLeft, WristRight, HandRight, ElbowLeft, Shoulder-
Right, ShoulderCenter, ElbowRight, ShoulderLeft, KneeRight, HipRight,
Spine, HipCenter, HipLeft

474 HandRight, Head, WristRight, HandLeft, ElbowLeft, WristLeft, Shoulder-
Center, ShoulderLeft, ShoulderRight, ElbowRight

595 Head, ShoulderCenter, HipLeft, ShoulderLeft, WristLeft, HandLeft,
WristRight, HipRight, HipCenter, HandRight, ElbowLeft, ShoulderRight, El-
bowRight, Spine, KneeLeft, KneeRight, FootLeft, AnkleLeft
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644 Head, HandLeft, WristLeft, ElbowLeft, ShoulderCenter, ShoulderRight, El-

bowRight, ShoulderLeft, HandRight, WristRight, Spine, HipRight, HipCenter,
HipLeft

723 Head, ShoulderLeft, ShoulderCenter, HandRight, HandLeft, WristRight,
WristLeft, ElbowLeft, ShoulderRight, ElbowRight, KneeRight, HipRight,
Spine, HipCenter, HipLeft

Raise your arm to one side
Adult

565 HandRight, WristRight
577 HandRight, WristRight
604 HandRight, WristRight
734 HandRight, WristRight
876 HandRight, WristRight
888 HandRight, WristRight
921 HandRight, WristRight
934 HandRight, WristRight
970 HandRight, WristRight
976 HandRight, WristRight

Child
103 HandRight, WristRight, ElbowRight, HandLeft, ShoulderRight, FootLeft,

WristLeft, KneeRight, Head
106 HandRight, WristRight, ElbowRight
169 HandRight, WristRight, ElbowRight
290 HandRight, WristRight, HandLeft, WristLeft, ElbowRight
337 HandRight, WristRight, ElbowRight
342 HandRight, WristRight
474 HandRight, WristRight, ElbowRight
595 HandRight, WristRight, ElbowRight
644 HandRight, WristRight
723 HandRight, WristRight, ElbowRight

Raise your hand
Adult

565 HandRight, WristRight, ElbowRight
577 HandRight, WristRight
604 HandRight, WristRight, ElbowRight
734 HandRight, WristRight
876 HandRight, WristRight
888 HandRight, WristRight
921 HandRight, WristRight
934 HandRight, WristRight
970 HandRight, WristRight, ElbowRight
976 HandRight, WristRight
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Child
103 HandRight, WristRight, ElbowRight
106 HandRight, WristRight, ElbowRight
169 HandRight, WristRight, ElbowRight
290 HandRight, WristRight, ElbowRight
337 HandRight, WristRight, ElbowRight
342 HandRight, WristRight, ElbowRight
474 HandRight, HandLeft, WristRight, WristLeft, ElbowRight, ElbowLeft
595 HandRight, WristRight, ElbowRight
644 HandRight, WristRight, ElbowRight
723 HandRight, WristRight, ElbowRight

Swipe across an imaginary screen in front of you
Adult

565 HandRight, WristRight, ElbowRight
577 HandRight, WristRight
604 HandRight, WristRight, ElbowRight
734 HandRight, WristRight
876 HandRight, WristRight
888 HandRight, WristRight
921 HandRight, WristRight
934 HandRight, WristRight
970 HandRight, WristRight, ElbowRight, HandLeft, WristLeft
976 HandRight, WristRight

Child
103 HandRight, WristRight, ElbowRight
106 HandRight, WristRight, ElbowRight, ShoulderRight, ElbowLeft, Head,

WristLeft, HandLeft, ShoulderCenter, ShoulderLeft, FootLeft, AnkleLeft,
KneeLeft

169 HandRight, WristRight, ElbowRight
290 HandRight, WristRight, ElbowRight, HandLeft, WristLeft, ElbowLeft, Shoul-

derLeft, Head, ShoulderRight
337 HandRight, WristRight, ElbowRight, HandLeft, WristLeft
342 HandRight, WristRight
474 HandRight, WristRight
595 HandRight, WristRight, ElbowRight, Head, ShoulderRight
644 HandRight, WristRight
723 HandRight, WristRight, ElbowRight

Throw a ball as far as you can
Adult

565 HandRight, WristRight, ElbowRight
577 HandRight, WristRight, ElbowRight, HandLeft, WristLeft, ShoulderRight,

Head, ShoulderCenter, ShoulderLeft, ElbowLeft, Spine, HipCenter, HipRight
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604 HandRight, WristRight, HandLeft, ElbowRight, WristLeft, ShoulderRight,

Head, ElbowLeft, ShoulderCenter, ShoulderLeft, Spine, FootLeft, AnkleLeft,
HipRight, HipCenter

734 HandRight, WristRight, ElbowRight, HandLeft
876 HandRight, WristRight, ElbowRight
888 HandRight, WristRight, ElbowRight, HandLeft, WristLeft
921 HandRight, WristRight
934 HandRight, WristRight, ElbowRight
970 HandLeft, ElbowRight, FootLeft, AnkleLeft, HandRight, WristRight,

WristLeft, ShoulderRight, KneeLeft, ShoulderCenter, Head, ElbowLeft,
ShoulderLeft, Spine, HipRight, HipCenter, HipLeft

976 HandRight, WristRight, HandLeft, WristLeft, ElbowRight
Child

103 HandRight, WristRight, ElbowRight
106 HandRight, WristRight, ElbowRight, HandLeft, ShoulderRight, WristLeft,

FootRight, KneeRight, AnkleRight
169 HandRight, WristRight, ElbowRight, HandLeft, WristLeft
290 HandRight, HandLeft, WristRight, WristLeft
337 HandRight, WristRight, HandLeft, WristLeft, ElbowRight, ElbowLeft, Shoul-

derLeft, ShoulderRight, Head, HipLeft, ShoulderCenter, HipCenter, HipRight,
AnkleRight, FootRight, Spine, KneeRight

342 Head, HandRight, ElbowRight, WristRight, ShoulderRight, ShoulderCenter,
HandLeft, ShoulderLeft, WristLeft, ElbowLeft, HipRight, HipLeft, Spine,
HipCenter

474 HandRight, WristRight, HandLeft, ElbowRight, WristLeft, ShoulderRight,
ShoulderCenter, Head, ShoulderLeft, Spine, ElbowLeft

595 ElbowRight, HandRight, WristRight, ShoulderRight, FootRight, AnkleRight,
Head, ShoulderCenter, KneeRight, HandLeft, WristLeft, Spine, HipRight,
HipCenter, ShoulderLeft

644 HandRight, WristRight, ElbowRight
723 HandRight, HandLeft, WristRight, WristLeft, ElbowRight, ElbowLeft

Touch your toes
Adult

565 Head, HandRight, WristRight, ElbowRight, ShoulderRight, ShoulderCenter,
HandLeft, WristLeft, HipRight, HipLeft, Spine, ShoulderLeft, HipCenter, El-
bowLeft, KneeLeft

577 Head, ShoulderRight, ShoulderCenter, ShoulderLeft, ElbowRight, ElbowLeft,
WristRight, WristLeft, HandRight, HandLeft, HipLeft, Spine, HipRight, Hip-
Center, KneeLeft, KneeRight
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604 Head, HandRight, WristRight, ElbowRight, ShoulderRight, ShoulderCenter,

HipRight, HandLeft, HipLeft, WristLeft, ShoulderLeft, Spine, HipCenter, El-
bowLeft, KneeRight, KneeLeft, AnkleRight

734 Head, ShoulderRight, ShoulderLeft, ElbowLeft, ShoulderCenter, ElbowRight,
WristRight, WristLeft, HandRight, HandLeft, HipRight, HipLeft, HipCenter,
Spine, KneeRight, KneeLeft

876 Head, WristLeft, ShoulderRight, ElbowLeft, HandLeft, ShoulderCenter,
ElbowRight, ShoulderLeft, WristRight, HandRight, HipLeft, HipCenter,
HipRight, Spine, KneeLeft, KneeRight

888 Head, ShoulderLeft, ShoulderCenter, ShoulderRight, ElbowRight, ElbowLeft,
WristRight, WristLeft, HandRight, HipRight, HandLeft, HipLeft, Spine, Hip-
Center, KneeRight, KneeLeft

921 Head, ShoulderRight, ElbowRight, WristRight, ShoulderLeft, ElbowLeft,
HandRight, WristLeft, HandLeft, ShoulderCenter, Spine, HipCenter,
HipRight, HipLeft, KneeRight, KneeLeft, AnkleLeft

934 Head, WristRight, HandRight, ElbowRight, ShoulderRight, ShoulderCenter,
HandLeft, HipRight, ElbowLeft, WristLeft, ShoulderLeft, HipLeft, Spine,
HipCenter, KneeRight, KneeLeft, AnkleRight, FootRight

970 Head, HandRight, WristRight, ShoulderCenter, ElbowRight, HandLeft,
WristLeft, ShoulderRight, HipCenter, Spine, HipLeft, HipRight, ElbowLeft,
ShoulderLeft, KneeRight, KneeLeft, AnkleLeft, FootLeft

976 Head, WristLeft, ShoulderCenter, ShoulderLeft, ElbowLeft, HandLeft,
WristRight, ShoulderRight, HandRight, ElbowRight, HipLeft, Spine, HipCen-
ter, HipRight, KneeLeft, KneeRight, FootLeft, AnkleLeft

Child
103 Head, ShoulderCenter, ShoulderLeft, ShoulderRight, ElbowLeft, WristLeft,

HandLeft, ElbowRight, Spine, HandRight, WristRight, HipLeft, HipRight,
HipCenter

106 Head, ShoulderCenter, ShoulderRight, HandLeft, ShoulderLeft, WristLeft,
HandRight, WristRight, ElbowLeft, Spine, ElbowRight, HipLeft, HipCenter,
HipRight, KneeLeft, KneeRight

169 Head, ShoulderCenter, ShoulderLeft, ShoulderRight, Spine, HipCenter,
HipLeft, HipRight

290 HandLeft, Head, WristLeft, HandRight, WristRight, ShoulderCenter, El-
bowLeft, ShoulderLeft, ElbowRight, HipRight, HipLeft, ShoulderRight,
Spine, HipCenter

337 Head, ShoulderRight, ShoulderLeft, HandRight, HandLeft, ShoulderCenter,
WristLeft, ElbowLeft, WristRight, ElbowRight, Spine, HipRight, HipCenter,
HipLeft, KneeRight, KneeLeft

342 HandLeft, Head, WristLeft, ShoulderLeft, ElbowLeft, HipRight, Shoulder-
Right, ShoulderCenter, HipCenter, Spine, HandRight, WristRight, AnkleLeft,
HipLeft, KneeLeft, KneeRight, ElbowRight, FootLeft
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474 ShoulderRight, Head, HandLeft, WristRight, HandRight, WristLeft, Shoulder-

Left, ElbowRight, ShoulderCenter, HipRight, ElbowLeft, HipLeft, AnkleLeft,
FootLeft, Spine, HipCenter

595 Head, HandLeft, WristLeft, ShoulderCenter, ElbowLeft, HandRight,
WristRight, ElbowRight, ShoulderRight, ShoulderLeft, Spine, HipCenter,
HipRight, FootRight, HipLeft, KneeRight

644 Head, HandRight, HandLeft, ShoulderCenter, WristRight, WristLeft, Shoul-
derRight, ElbowRight, ShoulderLeft, HipRight, HipLeft, ElbowLeft, Spine,
HipCenter, KneeRight

723 ShoulderCenter, Head, ShoulderRight, ShoulderLeft, Spine, HipRight, Hip-
Center, HipLeft, HandLeft, WristLeft
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APPENDIX G
CODEBOOK

Table G-1. Codebook for the qualitative analysis of children’s motions
Code Definition Values Example Notes
PARTICIPANT DETAILS
Participant
ID

Fill in the ID of the
participant

e.g., 290 ID is the name of the
video

Age Fill in the Age of the
participant

Age corre-
sponding to
ID as in the
Kinder-Gator
paper

Gender Fill in the Gender of
the participant

Gender corresponding
to ID in the Kinder-
Gator paper

Handedness Fill in the dominant
hand of participant

Handedness corre-
sponding to Handed-
ness in Kinder-Gator
paper

Motion Type Fill in the type of mo-
tion being performed

e.g., Raise
your hand

Choose from one of
the motion types spec-
ified

Side Used Fill in which side of
the body is raised or
put forward. If up-
per body, the dom-
inant should be fo-
cused on the arms. If
lower body, the dom-
inant should be fo-
cused on the legs

Left, Right,
Both, Def,
NA

Only for upper and
lower body motions.
Enter NA for full body
motions. Def means
no arm lifted for upper
body or no leg lifted
for lower body

Motion Cat-
egory

Fill in the body part
that is predominantly
required to move
when performing this
motion

Upper Body,
Lower Body,
Full Body

Use the pre-defined ta-
ble to fill in (A full
body motion is con-
sidered as both an up-
per body and lower
body motion)

Video
Timestamp

Timestamp from the
video when the par-
ticipant performs the
motion
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Table G-1. Continued
Code Definition Values Example Notes
How well do users move body parts relative to each other to produce movement
UpperBody
Moves
LowerBody

Does the upper body
move when a lower
body motion is being
performed?

Yes, No,
NA (Not
Applicable)

e.g., Arm
raised when
bending
knees

If yes, then write in
the body part being
used. Write NA if Mo-
tion Category is Up-
per Body. Put in
notes if it is just the
head that moves [co-
dename: bodypart]

LowerBody
Moves
UpperBody

Does the lower body
move when an upper
body motion is being
performed?

Yes, No,
NA (Not
Applicable)

e.g., Leg
moves when
throwing ball

If yes, then write in
the body part being
used. Write NA if
Motion Category is
Lower Body

# Arm
Movement

Number of arms
moved to perform the
motion

0 (No arm
movement),
1 (only one
arm), 2 (Both
arms are
used)

e.g., Arms
raised when
bending to
bow

Count arm movement
even if it seems unre-
lated to motion (e.g.,
scratching head)

# Leg
Movement

Number of legs moved
to perform the motion

0 (No leg
movement),
1 (only one
leg), 2 (Both
legs are used)

e.g., num-
ber of legs
moved to
bend knee

Count leg movement
even if it seems unre-
lated to motion

How well do users move a single body part?
LeftArm
Stance
Fixed

Was the left arm
moved without in-
terruptions (i.e., at
some point during
the movement of a
body part, did the
participant stop the
movement and return
to default position
without completing
the motion or did the
participant stop the
movement voluntarily
or involuntarily and
then continue along
the same direction)

Continuous,
Interrupted,
DEF (de-
fault: used
when body
part doesn’t
move)

e.g., raising
arm but then
going back to
the side with-
out complet-
ing the move-
ment

Use default if left arm
doesn’t move
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Code Definition Values Example Notes
RightArm
Stance
Fixed

Was the right arm
moved without
interruptions (i.e., at
some point during
the movement of
a body part, did
the participant stop
the movement and
return to default
position without
completing the
motion or did the
participant stop the
movement voluntar-
ily or involuntarily
and then continue
along the same
direction)

Continuous, In-
terrupted, DEF
(default)

e.g., raising
arm but then
going back to
the side with-
out complet-
ing the move-
ment

Use default if
right arm doesn’t
move/when body part
is in default state
(stand state)

LeftLeg
Stance
Fixed

Was the left leg
moved without
interruptions (i.e., at
some point during
the movement of
a body part, did
the participant stop
the movement and
return to default
position without
completing the
motion or did the
participant stop the
movement voluntar-
ily or involuntarily
and then continue
along the same
direction)

Continuous, In-
terrupted, DEF
(default)

e.g., Leg
continues to
drop on the
ground when
lifting leg to
one side

Use default if left leg
doesn’t move/when
body part is in default
state (stand state)

RightLeg
Stance
Fixed

Was the right leg
moved without in-
terruptions (i.e., at
some point during
the movement of a
body part, did the
participant stop the
movement and

Continuous, In-
terrupted, DEF
(default)

e.g., Leg
continues to
drop on the
ground when
lifting leg to
one side

Use default if right leg
doesn’t move/when
body part is in default
state (stand state)
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return to default
position without
completing the
motion or did the
participant stop the
movement voluntar-
ily or involuntarily
and then continue
along the same
direction)

# Arm Bent Quantifies the num-
ber of arms that are
bent to perform the
motion

0 (No arms
bent), 1 (1 arm
bent), 2 (Both
arms bent)

e.g., One
hand bent
when making
a bow will be
1

# Leg Bent Quantifies the num-
ber of legs that are
bent to perform the
motion

0 (No legs
bent), 1 (1 leg
bent), 2 (Both
leg bent)

e.g., Only
bending one
leg during
forward
lunge will be
1

Dir Up-
perBody
Start

Predominant direc-
tion of upper body
during movement
toward the peak
pose

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., putting
hands on hips
and leaning
to side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart] Peak: pose
that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state).

Dir Up-
perBody
Peak

Direction of upper
body at the peak
pose

Up (vertically
upwards; 90
degrees up)
[U],

e.g., putting
hands on hips
and leaning

Put in notes if it is just
the head that moves
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Down (verti-
cally down-
wards; 90
degrees down)
[D], For-
ward (Toward
Camera; per-
pendicular to
the body) [F],
Forward-Side
[FS], Forward-
Up [FU],
Forward-Down
[FD], Back-
ward(Away
from Camera;
perpendicular
to the body)
[B], Side
(horizontally
straight; 90 de-
grees side way)
[S], Side-Down
[SD], Side-Up
[SU], Default
[DEF]

to side can
be character-
ized as S.

[codename: body-
part]. Peak: pose that
signifies the actual
performance of the
motion (last pose
before participant
starts to return to
default stance). De-
fault State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state)

Dir Up-
perBody
End

Predominant direc-
tion of upper body
from after the peak
pose back to the de-
fault state

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., putting
hands on hips
and leaning
to side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state)
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Code Definition Values Example Notes
Dir Left-
Arm Start

Predominant direc-
tion of left arm dur-
ing movement to-
ward the peak pose

-XY, Along-
XZ Along-YZ,
DEF

e.g., Arm
raised high
when raising
arm to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance of
the motion. Default
State: Initial standing
pose wherein the
participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser

Dir Left-
Arm Peak

Direction of left arm
at the peak pose

Up (vertically
upwards; 90
degrees up)
[U], Down
(vertically
downwards; 90
degrees down)
[D], For-
ward (Toward
Camera; per-
pendicular to
the body) [F],
Forward-Side
[FS], Forward-
Up [FU],
Forward-Down
[FD], Back-
ward(Away
from Camera;
perpendicular
to the body)
[B], Side
(horizontally
straight; 90
degrees side
ways)

e.g., Arm
raised high
when raising
arm to one
side can be
characterized
as S

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser

181



Table G-1. Continued
Code Definition Values Example Notes

[S], Side-Down
[SD], Side-Up
[SU], Default
[DEF]

Dir Left-
Arm End

Predominant direc-
tion of left arm from
after the peak pose
back to the default
state

Along-XY,
Along-XZ
Along-YZ,
DEF

e.g., Arm
raised high
when raising
arm to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser

Dir
RightArm
Start

Predominant direc-
tion of right arm
during movement
toward the peak
pose

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Arm
raised high
when raising
arm to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state).
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Left: Is toward the
fridge. Right: Is to-
ward the dispenser

Dir
RightArm
Peak

Direction of right
arm at the peak pose

Up (vertically
upwards; 90
degrees up)
[U], Down
(vertically
downwards; 90
degrees down)
[D], For-
ward (Toward
Camera; per-
pendicular to
the body) [F],
Forward-Side
[FS], Forward-
Up [FU],
Forward-Down
[FD], Back-
ward(Away
from Camera;
perpendicular
to the body)
[B], Side
(horizontally
straight; 90 de-
grees side way)
[S], Side-Down
[SD], Side-Up
[SU], Default
[DEF]

e.g., Arm
raised high
when raising
arm to one
side can be
characterized
as SU

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser

Dir
RightArm
End

Predominant direc-
tion of right arm
from after the peak
pose back to the de-
fault state

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Arm
raised high
when raising
arm to one
side can be
characterized
as Along-XY

Put in notes if it is just
the head that moves
[codename: body-
part]. Peak: pose that
signifies the actual
performance of the
motion (last pose be-
fore participant starts
to return to default
stance). Default State:
Initial
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Code Definition Values Example Notes

standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser

Dir Left-
Knee Start

Predominant direc-
tion of left knee dur-
ing movement to-
ward the peak pose

-XY, Along-
XZ, Along-YZ,
DEF

e.g., Lift
leg to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving.Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser

Dir Left-
Knee Peak

Direction of left
knee at the peak
pose

Up (vertically
upwards; 90
degrees up)
[U], Down
(vertically
downwards; 90
degrees down)
[D], For-
ward (Toward
Camera; per-
pendicular to
the body) [F],
Forward-Side

e.g., Lift leg
to one side
can be char-
acterized as S

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance of
the motion (last pose
before partici-
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[FS], Forward-
Up [FU],
Forward-Down
[FD], Back-
ward(Away
from Camera;
perpendicular
to the body)
[B], Side
(horizontally
straight; 90 de-
grees side way)
[S], Side-Down
[SD], Side-Up
[SU], Default
[DEF]

pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser.

Dir Left-
Knee End

Predominant direc-
tion of left knee
from after the peak
pose back to the de-
fault state

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Lift
leg to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state).

Dir
RightKnee
Start

Predominant direc-
tion of right knee
during movement
toward the peak
pose

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Lift
leg to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance of
the motion (last pose
before participant
starts to return to
default stance).
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Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser

Dir
RightKnee
Peak

Direction of right
knee at the peak
pose

Up (vertically
upwards; 90
degrees up)
[U],Down
(vertically
downwards; 90
degrees down)
[D], For-
ward (Toward
Camera; per-
pendicular to
the body) [F],
Forward-Side
[FS], Forward-
Up [FU],
Forward-Down
[FD], Back-
ward(Away
from Camera;
perpendicular
to the body)
[B], Side
(horizontally
straight; 90 de-
grees side way)
[S], Side-Down
[SD], Side-Up
[SU],Default
[DEF]

e.g., Lift leg
to one side
can be char-
acterized as S

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser.

Dir
RightKnee
End

Predominant direc-
tion of right knee
from after the peak
pose back to the

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Lift leg
to one side
can be char-
acterized

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
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default state. as Along-XY pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser.

Dir LeftLeg
Start

Predominant direc-
tion of entire left leg
during movement
toward the peak
pose

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Lift
leg to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser.

Dir LeftLeg
Peak

Direction of entire
left leg at the peak
pose

Up (vertically
upwards; 90
degrees up)
[U], Down
(vertically

e.g., Lift leg
to one side
can be char-
acterized as S

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
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downwards; 90
degrees down)
[D], For-
ward (Toward
Camera; per-
pendicular to
the body) [F],
Forward-Side
[FS], Forward-
Up [FU],
Forward-Down
[FD], Back-
ward(Away
from Camera;
perpendicular
to the body)
[B], Side
(horizontally
straight; 90 de-
grees side way)
[S], Side-Down
[SD], Side-Up
[SU], Default
[DEF]

pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is
not moving. Use
default if upper body
doesn’t move/when
body part is in de-
fault state (stand
state). Left: Is toward
the fridge.Right: Is
toward the dispenser.

Dir LeftLeg
End

Predominant direc-
tion of entire left leg
from after the peak
pose back to the de-
fault state

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Lift
leg to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
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dispenser.
Dir Right-
Leg Start

Predominant di-
rection of entire
right leg during
movement toward
the peak pose

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Lift
leg to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser.

Dir Right-
Leg Peak

Direction of entire
right leg at the peak
pose

Up (vertically
upwards; 90
degrees up)
[U], Down
(vertically
downwards; 90
degrees down)
[D], For-
ward (Toward
Camera; per-
pendicular to
the body) [F],
Forward-Side
[FS], Forward-
Up [FU],
Forward-Down
[FD], Back-
ward(Away
from Camera;
perpendicular
to the body)
[B], Side

e.g., Lift leg
to one side
can be char-
acterized as S

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser.
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(horizontally
straight; 90 de-
grees side way)
[S], Side-Down
[SD], Side-Up
[SU], Default
[DEF]

Dir Right-
Leg End

Predominant direc-
tion of entire right
leg from after the
peak pose back to
the default state

Along-XY,
Along-XZ,
Along-YZ,
DEF

e.g., Lift
leg to one
side can be
characterized
as Along-XY

Put in notes if it is
just the head that
moves [codename:
bodypart]. Peak:
pose that signifies the
actual performance
of the motion (last
pose before partici-
pant starts to return
to default stance).
Default State: Initial
standing pose wherein
the participant is not
moving. Use default
if upper body doesn’t
move/when body part
is in default state
(stand state). Left:
Is toward the fridge.
Right: Is toward the
dispenser

How forceful is the motion performed
Effort
UpperBody

Effort applied to the
upper body to per-
form the motion

Light (less ef-
fort than refer-
ent), normal

e.g., slight
bent of upper
body to make
bow

Referents located
at onedrive (kinder-
gator/ RGB Videos/
Referents)

(same effort as
referent), ex-
tra(more effort
than referent),
DEF (Default
state)
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Effort Arm Effort applied to the

arm to perform the
motion

Light (less
effort than ref-
erent), normal
(same effort as
referent), ex-
tra(more effort
than referent),
DEF (Default
state)

e.g., moving
arm far back
to punch

Referents located
at onedrive (kinder-
gator/ RGB Videos/
Referents)

Effort Leg Effort applied to the
leg to perform the
motion

Light (less
effort than ref-
erent), normal
(same effort as
referent), ex-
tra(more effort
than referent),
DEF (Default
state)

e.g., deep
bend of
knees to
jump

Referents located
at onedrive (kinder-
gator/ RGB Videos/
Referents)

How fast is the motion performed
Body Speed How fast did the

user move their
body when perform-
ing the motion?

Slow (less
speed than ref-
erent), Normal
(same speed as
referent), Fast
(more speed
than referent).

e.g., swing-
ing arms to
swipe

Referents lo-
cated at onedrive
(kinder-gator/RGB
Videos/Referents)
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