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Abstract—Gesture recognition algorithms help designers create 

intelligent user interfaces for a number of application areas. 

However, these recognition algorithms are usually designed to 

recognize the gestures of adults, not children, and as such they 

generally do not perform as well for children as adults. 

Recognition of younger children’s gestures is particularly poor 

when compared to recognition of older children’s and adults’ 

gestures. Researchers have begun to examine the aspects of 

children’s gesture articulation patterns that make recognition 

difficult. This paper extends the initial work examining child-

specific recognition approaches by considering general purpose 

approaches and how they might apply to the problem of 

recognizing children’s touchscreen gestures. This paper presents a 

survey of existing recognition and analysis techniques for gestures 

of both adults and children from a human-centered perspective, 

highlighting ways in which improved recognition can lead to a 

better experience for children using touchscreen gestures in a 

variety of contexts. 

 
Index Terms—children, drawing, gesture, learning, recognition  

I. INTRODUCTION 

HILDREN are increasingly using touchscreen devices in a 

variety of contexts (Common Sense Media, 2013). Prior 

work investigating children’s touchscreen interactions has 

shown clear benefits of designing touchscreen applications 

based on children’s specific interaction patterns, which are 

largely distinct from those of adults (Anthony et al., 2012a; Arif 

and Sylla, 2013; Hiniker et al., 2015; Vatavu et al., 2015b). In 

particular, children’s gesture interactions are quite different 

from those of adults. For example, children tend to use more 

ink, produce larger gestures, and take longer to create their 

gestures than adults (Shaw and Anthony, 2016a). We use the 

term ‘gesture’ to refer to a series of one or more single-finger 

strokes on a touchscreen to produce a shape, letter, number, or 

other symbol, as demonstrated by Figure 1. This definition is 

consistent with a large body of previous work (Anthony et al., 

2013b; Rubine, 1991; Vatavu et al., 2013a, 2013b, 2012; 

Woodward et al., 2016). Because the recognition of these 

single-touch gestures is a fundamentally different problem than 

recognizing other types of gestures, we focus only on single-

touch gestures in this work. However, we believe that many of 

our conclusions are also applicable to other types of gestures 

produced by children. 

Gesture recognition algorithms have achieved accuracy rates 

as high as 99% for adults (Alimoglu and Alpaydin, 1997; Cho, 

2006; Olsen et al., 2007; Taranta II and LaViola Jr., 2015; 

Vatavu et al., 2012), but rates are much lower for children. 

Woodward et al. (Woodward et al., 2016) report rates as low as 

64% for 5-year-old children. Children are less consistent than 

adults in their gesture interactions in a number of ways 

(Anthony et al., 2013b; Shaw and Anthony, 2016a), but there 

has been little work examining why recognition rates are so 

much lower for children’s gestures than those of adults, or how 

to improve them. The low recognition rates point to the need 

for additional work examining the behaviors exhibited by 

children when making these gestures.  

The primary focus of this paper is to examine children’s 

touchscreen gestures, which we accomplish by conducting a 

survey to learn about specific interaction patterns and children’s 

use of touchscreen technology. We also identify open areas for 

improving gesture recognition. Much of the work done with 

children’s touchscreen gestures to this point has adapted prior 

work on adults’ gestures (Anthony, 2019; Kim et al., 2013; 

Shaw and Anthony, 2016a; Woodward et al., 2017, 2016). To 

motivate future work on children’s gestures, it is important to 

understand existing work on adults’ gestures and what aspects 

have and have not been applied to children’s gestures. 

Furthermore, in this survey we discuss what can be learned 

from examining children’s gestures, both in terms of specific 

interaction patterns and more general observations about 

children’s use of touchscreen technology. Toward this end, in 

this survey, we present an examination of the field of 

touchscreen gesture recognition and analysis for both children 

and adults through the lens of how it is relevant to children’s 

gesture interactions. 

 Later in this paper, we also present examples of ways in 

which gesture recognition is being used in educational 

technology. These examples help motivate continued work on 

recognizing children’s gestures as a means of improving the 

state of these pedagogical systems. An example of such an 

educational system is the iOS application abc PocketPhonics 
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Figure 1. Four examples of touchscreen gestures. 

These gestures include the number “2”, the letter “E”, 

the “checkmark” symbol, and the “triangle” shape, 

and were all produced by the same 10-year-old 

participant in Woodward et Al.’s  (Woodward et al., 

2016) study of interface complexity. 
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(“abc PocketPhonics: letter sounds & writing + first words,” 

2018), which uses recognition to evaluate children’s gesture 

input. Based on the result, the system provides feedback on how 

the child can improve their writing. Having the ability to 

recognize the children’s gestures enables the system to give 

more meaningful guidance to the child. 

While there have been many surveys on gesture recognition, 

few have focused on recognizing children’s gestures. In 

particular, there have been numerous surveys on 3D hand, face, 

and body gesture recognition (Cheng et al., 2016; Konstantinos 

G. Derpanis, 2004; Mitra and Acharya, 2007; Murthy and 

Jadon, 2009; Ravindran, 2010), but very few addressing 

touchscreen gestures. Zhai et al.’s (Zhai et al., 2012) survey 

concerns touchscreen gestures, but focuses on issues regarding 

the design of the gestures, only briefly discussing recognition. 

Olsen et al. (Olsen et al., 2009) briefly discuss stroke gesture 

recognition, though their survey focuses on approaches to 

sketch-based modeling, which involves the creation and 

recognition of more complex drawings (such as circuit 

diagrams for engineering courses), which is less necessary for 

children’s applications. Additionally, none of the surveys 

mentioned above have focused on children’s gestures. We fill 

this gap in the gesture interaction literature by explicitly 

examining children’s gestures and by surveying stroke gesture 

recognition methods from the perspective of how they can be 

applied to children’s gestures. 

 We found the papers selected for this survey using the 

following methodology: we searched the ACM Digital Library, 

Google Scholar, and IEEE Explore for “touchscreen gesture,” 

“touchscreen gesture recognition,” “gesture recognition 

children,” and “children touchscreen gesture.” We examined 

papers that were returned and include all those that concerned 

touchscreen gesture recognition (not necessarily for children) 

or children’s interactions with touchscreens. We also examined 

relevant papers cited by the papers we found in our search using 

the same criteria. Table 1 shows a summary of the number of 

papers from each source. 

 The outline for the rest of this paper is as follows: Section II 

provides an overview of the types of gesture-based applications 

commonly used by children as well as the potential benefits of 

using those applications. Section III discusses children’s 

touchscreen gestures, including recognition and classification 

of those gestures. In Section IV, we discuss types of recognizers 

and offer a comparison between the different categories. 

Section V concerns gesture features and analyses researchers 

use to investigate the factors that influence recognition. Finally, 

Section VI discusses open areas for future work. Figure 2 shows 

a glossary of important terms that the reader may find useful. 

II. GESTURE BASED APPLICATIONS 

Touchscreen applications have the potential to provide children 

with experiences that help them gain real world knowledge and 

problem-solving skills through intuitive interactions  (Lovato 

and Waxman, 2016). In this section, we begin by discussing 

some of these potential cognitive and developmental benefits of 

using touchscreen applications, particularly those that employ 

gesture recognition. We also provide further context by 

discussing several types of applications commonly used by 

children that often employ gesture recognition. In particular, we 

discuss the use of gestures in games and educational 

applications. It is important to note that while we provide 

examples of existing gesture-based applications for children, 

most such systems typically support limited gesture sets and 

highly constrained domains. Thus, there is still much room for 

improving these systems. Better recognition will both enhance 

existing systems and enable the creation of new systems that 

were not previously possible. 

As a motivational example, consider the following scenario. 

A child is using an application designed to teach young children 

to draw shapes like circles and squares. The system prompts the 

child to draw a diamond, but instead she draws a square. The 

recognition algorithm, which is designed to account for 

common idiosyncrasies in children’s gestures, classifies the 

drawing as a square and offers feedback, showing a guide on 

how to draw the diamond. This example shows a clear instance 

in which improved recognition rates can lead to adaptive 

Source Count 

  

ACM Digital Library 69 

Google Scholar 42 

IEEE Explore 13 

Other (textbook, app, etc.) 10 

TOTAL 134 

Table 1. A breakdown of the sources of the papers 

included in this survey.  

• Feature – Any quantitative measure of some aspect 

of a gesture. 

• Articulation Feature – A measure used to quantify 

some aspect of the way a user creates a gesture. 

• Bounding Box – The smallest rectangle with vertical 

and horizontal sides that can completely enclose a 

gesture. 

• Elicitation – An experimental technique by which 

gesture data is collected from users.  

• Gesture – A series of one or more strokes on a 

touchscreen to make a letter, number, shape or 

symbol. 

• Guessability – The quality of a gesture that allows a 

user to know what the gesture refers to without 

explicit familiarity with the gesture. 

• Referent – The action or symbol that a gesture is 

intended to represent.  

• Training set – The gestures used to define the model 

that is used to recognize test gestures. 

• User-dependent – A type of gesture recognition 

experiment in which the recognizer is trained on 

gestures from the same user it is tested on. 

• User-independent – A type of gesture recognition 

experiment in which the recognizer is trained on 

gestures from different users than it is tested on. 

 

Figure 2. A glossary of important terms from our paper. 
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scaffolding to support children’s learning, particularly in the 

context of learning to draw shapes, letters, numbers, and 

symbols. 

A. Benefits of Recognition Based Applications 

The use of touchscreen devices and computers in general can 

offer cognitive benefits in many contexts. While parents and 

educators may worry about the harmful effects of children 

spending too much time using computers, several prior studies 

have shown that children can learn valuable real-world 

knowledge and problem-solving skills when using certain 

applications (Flewitt et al., 2015; Huber et al., 2016; Lauricella 

et al., 2010). For example, Lauricella et al. (Lauricella et al., 

2010) showed how computers could effectively convey 

information to children in a study in which children were shown 

the location of hidden objects with a digital 3D representation 

of a room, then asked to retrieve the objects in the actual room. 

Children performed better when shown the digital 

representation in an interactive mouse-and-keyboard game than 

when shown a video of the objects being hidden. Flewitt et al. 

(Flewitt et al., 2015) showed the positive effects of 

supplementing schooling with iPad applications. The authors 

note that children using iPad applications as part of their 

schooling achieved measurable gains in literacy over a two-

month period. Huber et al. (Huber et al., 2016) examined 4- to 

6-year-old children’s ability to learn from touchscreen 

applications by using an application to teach them to solve a 

variant of the Towers of Hanoi problem, then having them solve 

the problem in the real world. The interactive nature of 

touchscreen devices provides the opportunity for a system to 

provide feedback based on a child’s interactions that would 

normally require oversight by a skilled adult. The results of the 

study show that children are able to transfer problem-solving 

skills from their interaction with both traditional mouse-and-

keyboard input and touchscreen devices to real world scenarios. 

Based on this body of literature, we can see that interactions 

with computers, including touchscreen devices, have the 

potential to offer cognitive and developmental benefits to 

children who use them. In this paper, we discuss ways in which 

gesture interaction can be used in applications that provide 

these kinds of benefits. Our goal in this work is to motivate one 

method by which these recognition-based systems can be 

improved. We now discuss two of the most common types of 

recognition-based applications for children: games and 

educational systems.  

B. Games 

A number of touchscreen applications for children use gesture 

recognition. In particular, mobile games are often used by 

children, and many of these applications make use of 

touchscreen gestures. A 2017 report by Common Sense Media 

stated that children ages 5 to 8 spend an average of 24 minutes 

a day playing games out of an average of one hour and 2 

minutes of mobile usage (Common Sense Media, 2017). The 

authors reported that playing games was the second most 

common usage of mobile devices by children, behind watching 

videos at 25 minutes. Thus, playing games accounted for 38.7% 

of children’s mobile usage. Even in the 2- to 4-year-old age 

group, the survey reports that children spend an average of 16 

minutes per day playing mobile games out of a total of 58 

minutes of mobile usage (27.6% of usage). Clearly, children 

spend a non-negligible amount of time playing games on 

mobile devices. Thus, developers of some games could improve 

children’s experiences with their apps by better understanding 

children’s gestures. Improving gesture recognition could help 

improve children’s experience as well as allowing for more 

complex interactions in games. 

 Several mobile games for children make use of touchscreen 

gestures. Anthony et al. (Anthony et al., 2012a) conducted a 

survey of 23 games for children on the Android marketplace 

and found that 6 of them used touchscreen gestures as a form of 

interaction. This suggests the number of games that use gesture-

based applications for children is low, but this could be due to 

low recognition rates, and they provide useful examples of how 

touchscreen gestures are used. We walk through some examples 

of games that could be played by children to provide some 

concrete examples. Consider the application Magic Touch: 

Wizard for Hire (Nitrome, 2015), in which the user must create 

gestures to cast spells. Figure 3 shows a screenshot of the game 

in which the user is drawing a “V” gesture to cast a spell to 

destroy the corresponding balloon. Other games use a similar 

interaction mechanism of creating gestures to cast spells or 

perform other actions (Toast Games, 2016). Other popular 

games like Candy Crush Saga (King.com Ltd., 2017) and 

Temple Run (Imangi, 2011) make use of a simple swipe touch 

gesture. Beyond the obvious benefit of reducing children’s 

frustration when using these games, improving recognition of 

children’s gestures in games can help enable beneficial new 

experiences, especially in the context of education. As an 

example, Williford et al.’s (Williford et al., 2017) ZenSketch 

application uses recognition as part of a game to help 

engineering students develop their freehand drawing skills. 

Games offering a wide variety of benefits, particularly 

development of motor skills, could be developed with improved 

recognition. 

 
Figure 3. A screenshot of Magic Touch: Wizard for 

Hire (Nitrome, 2015), a mobile application for 

children in which the user draws a gesture to cast a 

spell that pops a balloon. 
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C. Educational Applications 

A number of educational applications make use of touchscreen 

gestures. The lower number of educational applications may be 

due to the expectation that the application will provide 

measurable benefits to the children using it, which presents 

difficulty since recognition rates for children’s gestures are so 

low (Woodward et al., 2016). Thus, in order to expand the 

potential benefits of educational applications using gesture 

interaction, it is important that research be devoted to 

improving recognition of children’s gestures. 

Gesture-based educational systems may also have the benefit 

of improving education in some contexts through their natural 

support of tactile learning (the acquisition of knowledge 

through physical activity (Gardner, 1985)). In other words, the 

physical act of performing a touchscreen gesture may offer 

benefits that other modalities do not. In the case of children, 

physically drawing the letters, numbers, shapes, and symbols 

can offer children the opportunity to develop motor skills that 

may also apply to pencil and paper interaction. One study 

supporting tactile learning in adults using touchscreens was that 

of Appert and Zhai (Appert and Zhai, 2009). In the study, the 

researchers showed that stroke-based gesture shortcuts could be 

equally effective as keyboard-based shortcuts, with the added 

benefits of aiding in recognition and recall due to the gestures’ 

natural resemblance to their intended action. However, 

continued work is needed to better understand this potential 

benefit of gesture interaction, particularly as it may relate to 

children. 

A common class of applications helps children develop their 

skills with creating letters, numbers, and shapes by tracing a 

guide and providing feedback. Recognition allows the system 

to provide more detailed feedback than a simple check against 

the provided tracing template. For example, the system might 

say, “it looks like you drew the number ‘8’ instead of the letter 

‘A’” after a failed attempt to recognize an “A.” This model of 

feedback and resubmit has been shown to improve learning 

outcomes compared to traditional methods (Malmi and 

Korhonen, 2004). Other educational drawing applications 

instruct the child to draw on a blank canvas (without tracing), 

then use a recognition algorithm to evaluate the input. Lanna 

and Oro (Crescenzi Lanna and Grané Oro, 2019) reported that 

children employ gestures when using drawing and coloring 

apps on touchscreen devices. 

Schuler’s (Shuler, 2009) report on educational technology 

points out several key benefits of educational applications for 

children. According to the report, these applications enable 

children to learn anywhere at any time without the need for an 

instructor to be present. These applications also enable 

personalized learning experiences, which can be provided by 

adaptive algorithms that are not feasible in traditional 

classroom interactions. However, to take advantage of these 

potential benefits, it is important that the applications be 

designed with children’s interactions in mind. A system’s 

ability to offer an educational experience depends on its ability 

to evaluate the users’ input, so improved recognition is 

necessary for gesture-based systems to reach their full potential.  

These examples of use of recognition in educational 

applications helps illustrate how touchscreen devices can serve 

as an aid to children’s learning rather than a hindrance. 

Improving recognition would enable these systems to better 

understand the children’s intent and to provide more 

appropriate feedback. Thus, the system can go a step beyond 

simply recognizing the child’s gestures and allow them to 

correct poor gesture articulations in the same way that a teacher 

may help them to correct malformed handwriting. Improved 

recognition can offer richer interaction experiences for children 

using educational applications. 

III. CHILDREN’S TOUCHSCREEN INTERACTIONS AND GESTURE 

RECOGNITION 

In this section, we describe the prior work that has been 

conducted to analyze children’s touchscreen gestures. 

However, because the body of work in the area specifically 

focusing on children has been very limited, we also include 

work on gesture recognition and interaction that did not 

specifically target children and discuss how it might apply or 

extend to children. Furthermore, the recognition techniques that 

have been applied to children’s gestures thus far have been 

directly derived from prior work on adults’ gestures. However, 

we describe the work through the lens of how it relates to 

children’s gestures. 

 It has been well documented that children’s touchscreen 

input behaviors are not equivalent to those of adults (Anthony 

et al., 2012a; Arif and Sylla, 2013; Hiniker et al., 2015; Vatavu 

et al., 2015b). In fact, several prior studies have shown that even 

a single touch or swipe can be used to identify whether a user is 

a child or adult with over 85% accuracy (Cheng et al., 2020; 

Nguyen et al., 2019; Vatavu et al., 2015a). Touchscreen 

interactions are also quite different from traditional mouse 

input, and the effects vary among different ages of children 

(Findlater et al., 2013), indicating the importance of studying 

touchscreen interactions in children of specific age groups, as 

compared to general mouse input interactions. Most 

commercial hardware devices with touchscreens like iPads or 

Android tablets are generally designed for adults, but 

specifically investigating children’s interaction patterns allows 

application designers to improve their applications for children.  

One factor that makes recognizing children’s gestures a 

difficult problem is that the interaction patterns of children of 

different ages are also quite different from one another. 

Younger children (e.g., ages 5 to seven years old), for example, 

tend to be less consistent in creating gestures than older children 

(e.g., 8 years old and older) (Brown and Anthony, 2012; 

Woodward et al., 2016). Figure 4 illustrates the wide variety 

among gestures from children of different ages. Thus, the age 

group of intended users of touchscreen applications is an 

important factor for designers to consider. Prior studies have 

offered a number of guidelines for designing touchscreen 

applications for various ages of children (Anthony, 2019; 

Anthony et al., 2012a; Hiniker et al., 2015; McKnight and 

Fitton, 2010; Nacher et al., 2015; Soni et al., 2019a; Woodward 

et al., 2016). For example, Anthony et al. (Anthony et al., 

2012a) suggest training age-specific recognizers for 

recognizing children’s gestures, and Woodward et al. 

(Woodward et al., 2016) suggest using more training examples 
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when training recognizers for younger children. We focus our 

discussion of existing work on touchscreen interactions and 

gesture recognition into several major categories: (A) 

developmentally appropriate prompts and feedback, (B) 

selection of gestures, (C) gesture elicitation, (D) recognition 

and classification of children’s gestures, and we conclude by 

discussing the challenges associated with studying children’s 

touchscreen gestures (E). 

A.  Developmentally Appropriate Prompts and Feedback 

Understanding the differences in interaction patterns among 

children of different ages allows designers to create adaptive 

experiences for the children using their applications. Several 

studies have investigated ways in which designers can adapt 

their applications to make them more suitable for specific age 

groups of children. For example, Hiniker et al. (Hiniker et al., 

2015) showed that designers should consider the age of children 

who are the target audience when prompting them to make 

gestures, since 2-year-olds respond better to visual cues than 

audio cues, but the opposite is true for 5-year-olds. McKnight 

and Fitton’s (McKnight and Fitton, 2010) study of 6- to 7-year-

olds found that they make different errors when prompted to 

provide different types of input, such as , such as press and drag, 

select, and double click. The amount of time taken to respond  

 

 
5-year-olds 

 

6-year-olds  7-year-olds  

 
 8-year-olds 9-year-olds  10-year-olds   

Figure 4. “Diamond” gestures produced by children ages 5 to 10 from Woodward et al.’s study (Woodward et al., 2016), used 

with permission. Each column represents a different user, and gestures are scaled uniformly to show variation in size. 
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Dataset Gesture Types 

  

Anthony et al. 

(Anthony et al., 

2012a) 

 

MMG (Anthony 

and Wobbrock, 

2012) 

 

Algebra (Anthony 

et al., 2012b) 

 

Unistroke 

(Wobbrock et al., 

2007) 

 

HHReco (Hse and 

Richard Newton, 

2005) 

 

NicIcon (Willems 

et al., 2009) 

 

Table 2. Gesture sets used in several previous recognition experiments. 
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to those prompts also varied significantly. A study by Andrén 

(Andrén,  2011) found that children’s use of longer, more 

sustained strokes in gestures led to improved responses 

communication with their parents.  

 Prior work has also found that children benefit from additional 

feedback when interacting with touchscreens as compared to 

adults. Anthony et al. (Anthony et al., 2015, 2013a) tested the 

effect of visual feedback on recognition accuracy of two 

different template matchers, $N-Protractor (Anthony and 

Wobbrock, 2012) and $P (Vatavu et al., 2012) (these 

recognizers are discussed in more detail later in this paper). The 

study found that children created gestures that were different 

enough to affect the accuracy of $P (Vatavu et al., 2012) in the 

presence or absence of visual feedback, but that $N-Protractor 

(Anthony and Wobbrock, 2012) did not display this sensitivity. 

Furthermore, a number of different features of the gestures, 

including the width and height of the gestures, were 

significantly different in the presence or absence of visual 

feedback in the younger participants than the older participants. 

Both younger children and adults reported that they preferred 

gesture interactions with visual feedback to those without 

feedback.   

B. Selection of Gestures 

Another issue faced by application designers when creating 

gesture-based applications for children is that of selecting an 

appropriate gesture set that will be easily used by children 

without being too highly constrained by its simplicity. A study 

by Nacher et al. (Nacher et al., 2015) on multi-touch gestures in 

2- to 3-year-old children suggests that developers underestimate 

children’s ability to perform complex gestures like rotation and 

scale-up. However, in contrast to Nacher’s study, children ages 

2 to 4 who participated in a study by Aziz et al. (Abdul Aziz et 

al., 2013) did have trouble with free rotate, drag and drop, and 

pinch and spread gestures. Research with adults has also shown 

that users are better able to remember gesture sets that they 

themselves define rather than having them predefined (Jego et 

al., 2013; Nacenta et al., 2013). It is not clear whether this 

finding would extend to children, given the rapid changes in a 

child’s memory during development, e.g., between the ages of 

4 and 8 (Gathercole, 1999), and children’s tendency to try novel 

new gestures when interacting with new devices (Rust et al., 

2014; Soni et al., 2019b).  Further work is needed to better 

understand the types of gestures children are best able to 

remember.  

A number of different gesture sets have been used to test the  

accuracy of gesture recognition algorithms. Most have not been 

evaluated in recognizing children’s gestures, but familiarity 

with the gesture sets is useful for understanding the overall state 

of gesture interaction. Table 2 shows some of these gesture sets. 

The Unistroke set (Wobbrock et al., 2007) was designed 

specifically for testing general stroke gesture recognizers that 

were limited to single stroke gestures, and MMG (Anthony and 

Wobbrock, 2012) was later developed to test general multi-

stroke recognizers. HHReco (Hse and Richard Newton, 2005) 

and NicIcon (Willems et al., 2009) provide domain-specific 

gesture sets reflecting geometrical and safety symbols, 

respectively. Anthony et al.’s (Anthony et al., 2012a) gesture 

set, the only set in this discussion designed specifically for kids, 

was created based on a survey of psychological and 

developmental literature as well as existing applications for 

children, and has been used in several studies on children’s 

gestures (Brown and Anthony, 2012; Shaw and Anthony, 

2016a; Vatavu et al., 2015b; Woodward et al., 2016).  

C. Gesture Elicitation 

Elicitation studies are a method of understanding users’ natural 

gesture execution tendencies. In elicitation studies, participants 

are asked to perform an action using whatever gesture they feel 

would be most appropriate to perform that action, and their 

response is recorded. This process is repeated for a number of 

participants, and the experimenter then analyzes the responses, 

looking to see if there is any similarity among the gestures 

between the different users (Wobbrock et al., 2009). Agreement 

rates are computed among the responses to quantify the level of 

agreement among the participants, and a gesture set may be 

developed based on the most common gestures elicited 

(Wobbrock et al., 2005). Elicitation studies can give insight into 

the mental models that users have when interacting with 

touchscreens, which some studies accomplish using a “think-

aloud” protocol, in which participants describe and explain each 

gesture they make during the study (Rust et al., 2014). A full 

treatment of gesture elicitation studies is beyond the scope of 

this work, but we outline some important studies in the domain 

to illustrate the impact of elicitation studies in Human-

Computer Interaction (HCI).  

Gesture elicitation were presaged by Wobbrock et al.’s 

(Wobbrock et al., 2005) study on the guessability of gestures. 

In Wobbrock et al.’s study, guessability refers to the degree to 

which a user is able to know what a gesture refers to even 

without being familiar with the gesture. The authors 

demonstrated a formalized method of improving guessability of 

gesture sets for adults by having participants define gestures. In 

what is generally considered the first elicitation study, 

Wobbrock et al. (Wobbrock et al., 2009) elicited natural 

gestures on a multi-touch tabletop device from users by 

showing them the effect that the gesture has, then asking them 

to create the gesture that would have that action. The authors 

report that previous experience with desktop devices strongly 

influences the way people made gestures on the multi-touch 

device, and they present a complete gesture set based on their 

findings. 

In another study, Morris et al. (Morris et al., 2010) asked 

participants to rate different multi-touch tabletop gestures 

created by researchers as well as multi-touch gestures created 

by participants from a previous study (Wobbrock et al., 2009). 

Participants rated the gestures based on their perceived level of 

match between gesture and referent, and ease in performing the 

gesture. To prevent bias by the participants, they did not know 

which gestures were designed by researchers and which were 

designed by participants in the previous study. These gestures 

were gathered in an elicitation study (Wobbrock et al., 2009), 

in contrast to those designed by the researchers, which were 

reportedly designed based on the researchers’ intuition of what 
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would be the most natural interaction for users. In general, 

gestures that had been created by other participants were blind-

rated more highly than those created by the researchers for ease 

of use. A possible explanation for why the designers’ gestures 

were less preferred to the elicited gestures could be that the 

designers’ gesture set was affected by so-called “expert blind 

spot” (Nathan et al., 2003). The gesture set designers knew 

more about how the gesture recognition process worked, which 

could have led them to create gestures that were more biased in 

favor of better recognition than natural interaction. Even if the 

elicitation study was designed without a specific recognizer in 

mind, the researchers may have been influenced by their 

knowledge of the recognition process to create gesture sets that 

could be more easily distinguished between and recognized. 

Thus, designers should consider the tradeoff of using a gesture 

set they design versus a gesture set elicited from users, which 

users may find more natural, but which may pose challenges for 

recognition (e.g., conflicts, noise). 

 Elicitation studies help us understand users’ natural 

interaction tendencies, but they suffer from several key 

limitations. First and foremost, elicitation studies are prone to 

legacy bias, described by Wobbrock et al. (Wobbrock et al., 

2009) (though the term was first used by Morris et al. (Morris 

et al., 2014)). The concept of legacy bias refers to users’ natural 

predisposition to perform new interactions based on what they 

have learned from their previous interactions with technology. 

This effect can result in gesture sets that are informed by these 

previous experiences rather than more novel (and possibly more 

natural) interactions. To counter legacy bias, Morris et al. 

(Morris et al., 2014) introduced three techniques to improve 

elicitation studies, including production (requiring multiple 

possible gestures for each prompt), priming (exposing 

participants to the technology or examples of gestures produced 

by experts before the study), and partners (having participants 

take part in elicitation studies in groups).  

Another limitation of elicitation studies in gesture interaction 

is cultural differences among users. Participants in elicitation 

studies are generally from similar areas of the world, and as 

such are likely part of the same culture. Thus, it is not clear 

whether their interactions will generalize to people of other 

cultures. To tackle this problem, Mauney et al. (Mauney et al., 

2010) conducted an elicitation study on a simulated touchscreen 

device with participants from nine different countries, finding a 

generally high level of agreement among the users. The study 

does, however, note that Chinese participants created 

significantly more symbolic gestures than participants from 

other countries. Further work is needed with more diverse pools 

of participants to characterize cultural differences among 

participants’ gesture interactions in elicitation so that designers 

can better be prepared to select gesture sets for applications 

across different cultures. 

1) Elicitation of Gestures with Children 

Several elicitation studies have focused specifically on gestures 

produced by children. Connell et al. (Connell et al., 2013) 

 
1 Discussed in detail in Section V. 

conducted an elicitation study examining whole body 

interaction for menu navigation in children 3 to 8 years old 

using the Microsoft Kinect. The study reported a low level of 

consistency among the gestures elicited from the children. Rust 

et al. (Rust et al., 2014) conducted an elicitation study with both 

adults and children on a multi-touch tabletop computer, then 

compared the gestures and offered guidelines for future 

elicitation studies. Adults and children created similar gestures 

that were influenced by their previous experience with making 

touchscreen gestures, but children were more likely to invent 

new gestures. Soni et al. (Soni et al., 2019b) found similar 

results in an elicitation study using a spherical touchscreen 

device. Children were again more likely to invent new gestures 

than adults. However, there have not been any gesture 

elicitation studies of children using small screen touchscreen 

devices like phones or tablets. 

D. Recognition and Classification of Children’s Gestures 

Early work in gesture recognition (Connell and Jain, 2001; 

Rubine, 1991; Wobbrock et al., 2007) focused on recognizing 

gestures produced by adults, largely overlooking children. In 

those studies that do examine recognition of children’s gestures, 

the same recognition algorithms are used for the children as for 

the adults, even though they generally perform much worse for 

children’s than adults’ gestures (Anthony et al., 2015; 

Woodward et al., 2016). Because studies of adults’ gestures 

have been so important in the development of the algorithms 

applied to children’s gestures, this section discusses studies 

conducted with both children’s and adults’ gesture data. 

 Several studies have examined recognition rates of 

children’s touchscreen gestures. Anthony et al. (Anthony et al., 

2015) examined recognition rates for children ages 10 to 17 

using two popular template-based recognizers, $N and $P1 

(Anthony and Wobbrock, 2012; Vatavu et al., 2012). 

Woodward et al.’s (Woodward et al., 2016) study of interface 

complexity, which also employed $P, examined recognition 

rates of 5- to 10-year-olds’ gestures in both user-dependent and 

user-independent contexts (see Section 2). User-dependent 

experiments estimate how well a recognizer can perform given 

training examples from the person whose gestures it will 

recognize. User-independent experiments provide a measure of 

the recognition accuracy that can be expected when the 

recognizer is used as part as an unconfigured, newly shipped 

application, without being trained on the specific user of the 

application. Anthony et al. (Anthony et al., 2015) and 

Woodward et al.’s (Woodward et al., 2016) studies of 5- to 10-

year-olds conclude that the 5-year-olds’  gestures are 

recognized with the least accuracy (approximately 65%), and 

that accuracy steadily increases for older children, with 10-

year-olds having the highest accuracy (approximately 94%). 

Furthermore, Woodward et al. (Woodward et al., 2016) 

reported a significant interaction between the user’s age and the 

number of samples used to train recognizers with respect to the 

accuracy achieved. Based on this finding, the authors 

recommended using more training samples for younger 
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children in order to achieve higher accuracy. However, this 

recommendation can present a challenge, since it can be time 

consuming to collect gestures from young children due to their 

tendency to lose attention during laboratory studies (Brewer et 

al., 2013). Other methods of collecting gestures, such as 

longitudinal data collection outside of the lab (Johnson and 

Turner, 2002), may not present the same difficulty with getting 

sufficient training data from children. 

To establish a baseline for comparing future work, Shaw et 

al. (Shaw et al., 2017) compared the ability of human viewers 

to identify gestures produced by children ages 5 to 10, finding 

a significant difference between human recognition (90.60%) 

and machine recognition (84.14%). The authors suggest the 

90.60% accuracy rate obtained by humans can be used as a 

benchmark for future work on recognizing children’s gestures. 

A study worth particular note due to its relevance to this 

paper is that of Kim et al. (Kim et al., 2013) on KimCHI, a 

system designed to classify children’s developmental skill and 

gender based on their execution of the digits 0 to 9 and the 

letters A to F. The system distinguished between preschool 

versus grade schoolers with 82.7% accuracy and classified the 

gender of the children in the study based on their sketches with 

72.8% accuracy. The authors collected a total of 725 gestures 

from four adults, twelve 7- to 8-year-olds, and eight 3- to 4-

year-olds. The system does not, however, attempt to recognize 

the gestures. The distance between the age groups included in 

the study makes it difficult to develop a cohesive understanding 

to characterize children’s touchscreen interactions across all 

ages. The gap in age groups led Kim et al. to conduct another 

study which built on their KimCHI framework, introducing 

EasySketch2 (Kim et al., 2016), an intelligent interface that 

combines KimCHI’s developmental classifier with a gesture 

recognizer to help development of children’s motor control. 

The system, which was tested on 70 children from ages 3 to 8, 

helped children improve their ability to draw by providing a 

developmentally appropriate interface with adaptive prompts 

and feedback; it used an algorithm developed by Valentine et 

al. (Valentine et al., 2012) to perform recognition. The system 

provides feedback and a ‘trace-the-dots’ activity to help the 

child develop their skills. The system quantified children’s 

improvement in drawing ability based on the similarity of each 

gesture to a predefined template.  

E. Challenges in Studying Children’s Gestures  

 Recognition of children’s gestures presents several challenges 

that are less problematic when dealing with adults’ gestures. 

One such challenge is that recognition experiments generally 

require a large number of samples for training, which can 

require participants to take part in long studies. Children are 

prone to lose interest and stop participating in empirical studies 

if they find them uninteresting (Brewer et al., 2013; Punch, 

2002). To deal with this issue, Brewer et al. (Brewer et al., 

2013) introduced a method of gamifying gesture collection in 

which participants are awarded points for completing individual 

components of the study. After completion of the study, the 

children have the opportunity to claim a prize, such as a small 

toy or stickers, based on the number of points they earn. The 

paper reported an increase from 73% completion without 

gamification up to 97% completion with gamification, in a 

study with children ages 5 to 7 years old, indicating a significant 

benefit in data fidelity can be gained by making an empirical 

study more engaging for children.  

 Beyond the challenge of collecting large numbers of samples 

of gestures from children, there are also challenges in dealing 

with the data produced by children. For example, several prior 

studies have reported that younger children sometimes draw the 

wrong gesture or scribble randomly when prompted to draw 

some of the gestures (Woodward et al., 2017, 2016). 

Additionally, Bahamóndez showed that children’s writing on a 

touchscreen device was slower and less legible than traditional 

on-paper writing. Prior work on children’s gestures have 

considered that giving the participants the ability to erase their 

gestures is not ideal, since it may encourage them to try to 

produce ‘beautified’ gestures rather than more natural ones, 

leading to less accurate representations of the gestures that 

would need to be recognized in a real application (Anthony et 

al., 2013b; Shaw and Anthony, 2016a; Woodward et al., 2016). 

A method of preventing children from randomly drawing that 

has been employed in previous studies is to have them produce 

an example of each of the gestures in the corpus on a sheet of 

paper, which they can then use as a reference if they feel unsure 

(Anthony et al., 2015; Brewer et al., 2013; Woodward et al., 

2016), preventing the children from getting confused during 

gesture collection. 

Children of different ages can produce very different 

gestures, due in part to both cognitive and motor development 

progress. Figure 4 shows an example of how drastic these 

variations in gestures can be, in data collected during a study by 

Woodward et al. (Woodward et al., 2016). The diamond 

gestures are highly variable for the younger children but 

become more consistent for older children and adults.  

The developmental differences among age groups is also 

reflected by research on fine motor control, which shows that 

children rapidly develop gross motor skills during their first two 

years of life (Newell, 1991), and continue to develop fine motor 

skills for the next several years. From age two to seven, children 

reach maturity in several motor tasks, like walking and running, 

and they begin to exhibit more refined motor control (Seifert 

and Hoffnung, 1987) in their use of their hands, fingers, and 

feet. Development of these fine motor skills is not only affected 

by age, but a number of other factors, such as a child’s 

experience and genetic disposition (Kakebeeke et al., 2013). 

Even among neurotypical children, there is a great deal of 

individual variation, indicating the importance of studying 

gesture patterns across ages. Personalized gesture recognition 

may be necessary to support the range of children’s gesture 

production patterns. 

The high level of variability indicates the value of studying 

children’s gestures at the fine-grained level of individual age 

groups, but this is not possible in all cases due to sample size 

limitations. Thus, researchers may analyze gesture interactions 

using groupings in which children of similar developmental 

levels are analyzed together. Several past studies (Anthony et 

al., 2015, 2012a; Connell et al., 2013; Kim et al., 2016; Shaw 
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and Anthony, 2016a) on children’s touchscreen interactions 

have grouped children based on Piaget’s (Piaget, 1983) theory 

of cognitive development, which posits that children undergo 

four stages of cognitive development. Stage 1 of Piaget’s model 

is the sensorimotor stage, which begins at birth and lasts until 

age two. Stage 2 is the preoperational stage, which spans from 

age two until age seven, followed by Stage 3, the concrete 

operational stage, which begins at age seven and ends at age 

eleven. Stage 4, the final stage of the model, is the formal 

operational stage, spanning from age eleven to adulthood. 

These classifications allow for useful and interesting 

comparisons, but prior work by Woodward et al. (Woodward et 

al., 2016) found substantial differences within these groupings, 

reporting 64% accuracy for 5-year-olds, 79% for 6-year-olds, 

90% for 7-year-olds, 85% for 8-year-olds, 88% for 9-year-olds, 

and 95% for 10-year-olds. The wide variation in accuracy 

indicates the importance of studying the interactions of 

individual ages of children based on cognitive and motor 

development.  

IV. GESTURE RECOGNITION TECHNIQUES  

As previously discussed, touchscreen gesture recognition 

accuracy rates are much lower for children than they are for 

adults, and even worse for younger children than older children 

(Anthony et al., 2015, 2013b, 2012a; Woodward et al., 2016). 

However, only a few recognition algorithms have been tested 

on children, and they are all template matching algorithms. 

There has been very little work on developing algorithms 

specifically targeted to recognizing children’s gestures. 

Therefore, we describe the various recognizers that have been 

designed for adults with additional discussion on how these 

various types of recognizers may be useful in recognizing 

children’s gestures.  

Prior work in gesture recognition has seen the development 

of a large number of recognition algorithms. Most of these 

algorithms can be grouped into the following major categories: 

(A) template matching approaches, (B) feature based statistical 

classifiers, (C) hidden Markov models (HMMs), (D) neural 

networks, and (E) combinations of these methods. A short 

description of each of these types of recognition algorithms is 

provided here, with some examples of some recognizers in each 

category, followed by a discussion of their advantages and 

disadvantages, and promise for recognizing children’s gestures. 

Table 3 summarizes the strengths and weaknesses of each of the 

categories of recognizer.  

Table 4 shows a summary of all the recognizers discussed in 

this paper, including recognition results reported in the papers 

in which they were introduced. The column labeled “# 

Gestures” refers to the number of different types of gestures in 

the gesture set used for evaluation. A cell value of “NR” means 

not reported, indicating that the value was not reported in the 

original paper.  

A. Template Matching Approaches 

Template matching recognizers compare candidate gestures to 

preselected examples of the gestures and returning the closest 

match as the result. The members of the $-family (“dollar 

family”) of recognizers, which includes the $1, $N, and $P 

recognizers (Anthony and Wobbrock, 2012, 2010; Vatavu et 

al., 2012; Wobbrock et al., 2007) are notable examples of this 

type of recognizer, and have been tested on children’s gestures. 

These algorithms are popular due to being relatively easy to 

implement and highly accurate despite their simplicity (Taranta 

II and LaViola Jr., 2015).  

The $1 recognizer (Wobbrock et al., 2007), the first of the 

three aforementioned $-family recognizers to be developed, 

recognizes unistroke gestures by scaling and resampling the 

points of each gesture uniformly, then finding the template 

which minimizes the distance between each corresponding pair 

of points in the candidate gesture and the template gesture. The 

$N recognizer (Anthony and Wobbrock, 2012, 2010), the 

second in the $-family, built on the limitations of the $1 

recognizer, extending it to multistroke gestures. The $N  

Type of Recognizer Strengths Weaknesses 

   

Feature Based Statistical Classifier 

Easy to implement; high recognition 

rates for gestures that fit the model 

defined by the features 

Not adaptive; limited by simplicity; 

relatively low accuracy; may require 

data in specific format 

Template Matcher 

Easy to implement and understand even 

for novice developers; relatively little 

code needed; high recognition rates with 

relatively few training examples; fast 

runtime 

Does not scale well for very large 

gesture sets; must iterate through each 

template, which can be both time and 

space consuming 

Hidden Markov Model (HMM) 
High overhead from segmentation and 

training; high accuracy 

High complexity; difficult to implement 

for novice developers 

Neural Networks 

Able to handle very large gesture sets; 

can adaptively learn and improve from 

mistakes 

Difficult to implement and understand; 

implementation details can be obscured 

by complexity 

Mixed Methods 

Combines positive aspects of other types 

of recognizers to improve recognition 

rates 

Overhead of combining disparate 

algorithms can lead to slow runtime and 

difficulty in programming 

Table 3. Several types of recognition algorithms and their strengths and weaknesses. 
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Recognizer Description Accuracy # 

Gestures 

# Training Samples 

Used 

# 

Users 

Ind/Dep 

Template Matchers 

GRANDMA 

(Rubine) (Rubine, 

1991) 

Early feature-based classifier; computes vector of 

13 geometric features and compares values for 

candidate gestures to known gestures 

92% 20 10/gesture NR Dep 

GesEdit (Cho, 

2006) 

Feature-based classifier of Korean characters that 

outputs gesture type based on values of 9 different 

features of varying complexity 

99.6% 11 N/A 20 Dep 

GDE (Apte et al., 

1993) 

Multistroke geometric shape recognizer based on 

feature-based ‘filters’ 

97.5% 6 N/A 10 Dep 

Smithies (Smithies 

et al., 1999) 

Recognizer employing approximately 50 features 

to recognize individual characters in a 

mathematical equation editor 

N/A N/A N/A 9 Dep 

Olsen et al. (Olsen 

et al., 2007) 

Uses direction of substrokes as a feature to classify 

unistroke gestures  

100% 9 204 total (23/gesture) 3 Dep 

Blagojevich et al. 

(Blagojevic et al., 

2010) 

Introduced 114 features for Rubine and used 

machine learning to find best combination 

96.9% 6 N/A 20 Dep 

Feature Based Statistical Classifiers 

Lee et al. (Lee et 

al., 2007) 

Graph-based symbol recognition algorithm 

comparing four matching algorithms 

97% 23 14/gesture 9 Dep 

Connell and Jain 

(Connell and Jain, 

2001) 

Template-based decision tree algorithm to classify 

handwritten characters 

86.9% 36 17,928 total (498 

/gesture) 

NR Dep 

!FTL 

(Vanderdonckt et 

al., 2018) 

Fast template matcher that matches triangles 

formed by vectors created based on the gesture’s 

path 

95.1% 14 30 /gesture 33  

Gestimator (Ye and 

Nurmi, 2015) 

Gestures broken down into strokes which are then 

used in template matching 

99.9% 18 5 /gesture 43 Dep 

$1 (Wobbrock et 

al., 2007) 

Unistroke point matching approach 99.5% 16 9 /gesture 10 Dep 

$N (Anthony and 

Wobbrock, 2010) 

Multistroke gesture matching 96.6% 16 9 /gesture 10 Dep 

Protractor (Li, 

2010) 

Unistroke closed-form matching via minimum 

angular difference between gestures 

99.6% 16 9 /gesture 10 Dep 

$N-Protractor 

(Anthony and 

Wobbrock, 2012) 

Closed form version of $N using Protractor’s 

matching method to improve runtime 

94.5% 16 15 /gesture 13 Dep 

$P (Vatavu et al., 

2012) 

Point cloud based matching approach 99.4% 16 9 /gesture 20 Dep 

$Q (Vatavu et al., 

2018) 

Fast point cloud matching approach designed for 

wearables 

99.7% 16 10/gesture 20 Dep 

1¢ (Herold and 

Stahovich, 2012) 

Rotationally invariant approach building on $1 97% 10 14 /gesture 14 Dep 

Penny Pincher 

(Taranta II and 

LaViola Jr., 2015) 

Extension of $N matching vectors between 

adjacent points; improves runtime of $N 

99.9% 18 10 /gesture 20 Ind 

$3 (Kratz and 

Rohs, 2010) 

Extension of $1 to 3-dimensional gestures 79.9% 10 5 /gesture 12 Dep 

Hidden Markov Models 

Sezgin et al. 

(Sezgin and Davis, 

2005) 

Hidden Markov Model based approach to 

segmentation and recognition of symbols 

96.5% 10 10 /gesture 10 Ind 

Jiang and Sun 

(Jiang and Sun, 

2005) 

Hidden Markov Model based approach to sketch 

recognition 

95% 23 14 /gesture 9 Ind 

Li and Yeung 

(Xiaolin Li and Dit-

Yan Yeung, 1997) 

Hidden Markov Model based approach to 

recognizing segmented handwritten characters 

91% 62 N/A 21 Ind 

Anderson et al. 

(Anderson et al., 

2004) 

Hidden Markov Model based approach to 

recognizing touchscreen gestures 

94.2% 12 60 /gesture 3 Ind 

Table 4. A comparison of the recognizers presented in this survey. 
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recognizer works by matching stroke sequences and ordering 

between the candidate and template gesture. Thus, the 

algorithm must consider every possible ordering and direction  

of strokes, leading to relatively long runtimes for gestures with 

many strokes. The $P recognizer (Vatavu et al., 2012) treats 

each multistroke gesture as a ‘cloud’ of points without regard 

to individual strokes. After scaling and rotating, the $P 

recognizer finds the best possible match between a candidate 

and template gesture, returning the template with the highest 

score as the result. $P is reported to deliver up to 99% accuracy 

on a corpus of 10 examples of each of 16 gesture types from 20  

adults at a much lower computational cost than $N (Vatavu et 

al., 2012). However, $P does not consider the ordering of the  

strokes or the direction, which may be needed to recognize 

some types of gestures with high accuracy. In such cases, $N 

may achieve higher accuracy. 

Vatavu et al. (Vatavu et al., 2012) provide a summary of the 

advantages and disadvantages of the $-family recognizers in the 

form of a “$-family cheat sheet.” $1 can only recognize 

unistroke gestures, whereas $N and $P can recognize both 

unistroke and multistroke gestures. All three of the recognizers 

have high accuracy (>98%). The algorithmic complexity, and 

thus the time taken to perform the recognition, is lowest for $1, 

followed by $P and then $N with the highest. Thus, $1 is ideal 

for unistroke gestures, and $P is the best choice for multistroke 

gestures. However, $P is not rotationally invariant, so it cannot 

distinguish between A and ∀, for example. The lack of 

rotational invariance in $P implies that it can only be used in 

contexts with predefined gesture sets that are guaranteed not to 

have rotational collisions between the gestures. In these cases, 

$N must be preferred over $P. Rotational invariance is 

important in recognizing children’s gestures, particularly due to 

their tendency to engage in “mirror writing” (Cornell, 1985), a 

 
2 The exact number of users is not reported. 

common phenomenon in which children draw the intended 

gesture backwards or upside down. 

The popularity of the $-family has led to a number of 

adaptations and improvements in other work. Herold and 

Stahovich (Herold and Stahovich, 2012) built on the $1 

recognizer to build their 1¢ recognizer, which improves runtime 

by providing a one-dimensional representation of the gestures. 

Taranta and LaViola (Taranta II and LaViola Jr., 2015) 

introduced a $-family inspired multistroke recognizer called 

Penny Pincher that achieves high accuracy even in constrained 

timeframes. Penny Pincher operates by breaking gestures down 

into a series of two-dimensional vectors between pairs of 

adjacent points. In their $3 recognizer, Kratz and Rohls (Kratz 

and Rohs, 2010) built on the $1 recognizer to create a 3-

dimensional recognizer by representing 3-dimensional gestures 

as continuous strokes and using a similar matching algorithm 

based on Euclidean distance. 

Another template matching algorithm was presented by 

Connell and Jain (Connell and Jain, 2001). The algorithm 

operates by first reducing the gesture to a string based on the 

coordinates of the points in the strokes of the gesture, then 

performing a string-matching algorithm using a decision tree by 

calculating the distance between each pair of strings. The 

authors report a recognition rate of 86.9% accuracy on a corpus 

of approximately 18,000 gestures. In total, there were 36 classes 

of gestures collected from at least 21 users2. 

Vanderdonckt et al. created !FTL (Vanderdonckt et al., 

2018), a fast template matcher based on a novel method of 

comparing gestures called local shape distance. In this method, 

gestures are broken down into triangles created by each three-

point window along a resampled gesture’s path. The similarity 

of these triangles to templates is then compared to find the best 

match. The authors report approximately 95% accuracy on a set 

of 5,540 gestures taken from 14 gesture classes 33 participants. 

Neural Networks 

Lecun et al. (LeCun 

et al., 1990) 

Neural network for recognizing handwriting digits  90% 10 984/gesture NR Ind 

Singh and Amin 

(Sameer Singh, n.d.) 

Neural network matching approach for recognizing 

symbols and sketches 
86% 52 10 /gesture NR Ind 

Lee (Lee, 1996) Neural network approach for recognizing handwritten digits 

with high accuracy even for edge cases  
97.1% 10 4,000 total (400 

/gesture) 

NR Ind 

Shrivastava and 

Sharma (Shrivastava 

and Sharma, 2012) 

Neural network matching approach for recognizing 

characters  
75% 20 11 /gesture NR Ind 

Mixed Methods 

SHARK2 

(Kristensson and 

Zhai, 2004) 

Graph-based template matching recognizer incorporating 

elements of feature-based classifiers 
N/A N/A N/A NR Dep 

SATIN (Hong and 

Landay, 2000) 

Fusion of ten different classifiers which first beautify and 

correct perceived errors in gestures then recognize them 
N/A N/A N/A NR Dep 

Yin and Sun (Yin 

and Sun, 2005) 

Multi-stroke template matcher based on minimal fitting 

error, supported by optimization via dynamic programming 
98% 4 400 /gesture 4 Dep 

Alimoglu and 

Alpaydin (Alimoglu 

and Alpaydin, 1997) 

Recognizer capitalizing on various combinations of 

recognition approaches 
99.3% 10 3,748 (approx. 37 

/gesture) 

44 Dep 

Table 4 (continued). A comparison of the recognizers presented in this survey. 
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Gestimator (Ye and Nurmi, 2015) is a template matching 

algorithm that focuses on recognizing more complex gestures 

than other template matching approaches by first segmenting 

the gesture into its constituent strokes, then comparing 

combinations of individual strokes using a more traditional 

template matching approach. The authors report high accuracy: 

99% with 5 training examples of 6 different gesture types from 

each of 13 participants, but the computational overhead is 

increased in adding segmentation. 

Lee et al. (Lee et al., 2007) presented a graph-based template 

matching approach to symbol recognition that examined four 

different matching techniques, all of which obtained over 97% 

matching accuracy on a corpus of 15 examples of each of 23 

gesture types collected from each of 9 participants. 

Template matching algorithms are usually quite simple in 

their implementation, making them ideal for novice 

programmers who wish to quickly add gesture recognition to 

their user interface prototypes (Vatavu et al., 2012; Wobbrock 

et al., 2007). Despite their simplicity, template matching 

algorithms can achieve very high accuracy on adults’ gestures, 

up to 99% in some cases, with sufficient training examples. For 

example, $P can reach 99% overall with 5 training examples 

(Vatavu et al., 2012). As prior work has shown (Anthony et al., 

2012a; Woodward et al., 2016), template matchers are generally 

not well suited for recognizing children’s gestures. 

Furthermore, template matching approaches are intended to be 

quick, easy substitutes for more complex recognizers when 

prototyping. They are not intended to be state of the art 

recognizers, so we expect recognition rates for other types of 

recognizers will be higher for children. We suggest the poor 

performance of template matchers is primarily because they 

rely on consistency among gestures of the same type. 

B. Feature Based Statistical Classifiers 

Feature based statistical classifiers employ a vector of features 

(that is, a group of metrics or measurements that are calculated 

on the gesture) to quantify the gesture and to use in 

classification. These features can take on any kind of value, but 

are usually numeric since they are calculations based on 

geometric properties. These values are then compared to a 

predefined threshold, and the recognizer returns the best match 

as the result. These recognizers are relatively easy to 

implement, but the complexity depends on the features used.  

One of the earliest and most well-known feature-based 

recognition algorithms was described by Rubine in 1991 

(Rubine, 1991). The recognizer computes 13 geometric 

features, such as the sine and cosine of the initial angle and the 

total length of the gesture and stores them as a vector. This 

vector is used to compare the candidate gestures using a linear 

discriminator. The candidate gesture with the most similar 

features to the test gesture is chosen as the result. Rubine’s 

algorithm has been used as the basis for a number of gesture-

based interfaces, such as Garnet (Myers et al., 1990), Amulet 

(Myers et al., 1995), and gdt (Long et al., 1999). Cho (Cho, 

2006) used a technique similar to Rubine in which 9 different 

features are used to classify hand-drawn Korean characters with 

over 99% accuracy. Apte et al’s (Apte et al., 1993) GDE 

recognizer used various features as ‘filters’ to recognize 

multistroke geometric shapes, but suffered from the inability to 

recognize those same shapes when drawn in a single stroke. 

Smithies (Smithies et al., 1999) used a feature vector of 

approximately 50 dimensions to recognize handwritten 

characters in a math equation editor. Blagojevic et al. 

(Blagojevic et al., 2010) developed a set of over 100 geometric 

features for use in classifying gestures and sketches, then used 

machine learning techniques to determine which combination 

of features resulted in the highest accuracy rate. The authors 

then altered Rubine’s algorithm to use the selected features 

rather than Rubine’s original features. The majority of the most 

effective features selected by the machine learning algorithm 

were related to either the curvature of the gesture or its size. The 

preference for these features indicates they are highly related to 

recognition, which could prove useful in future work on 

designing new recognition algorithms. In the domain of 

children’s gestures specifically, Shaw and Anthony (Shaw, 

2017; Shaw and Anthony, 2016a, 2016b) found that features 

related to curvature were the most affected by age, with younger 

children having a very large variation in curvature.  

In Olsen et al.’s (Olsen et al., 2007) feature-based classifier, 

the extracted feature vector is a representation of the angle at 

which each substroke of a unistroke gesture is drawn. The 

feature vector is divided into six components, with the first 

representing the number of substrokes whose angle is between 

0° and 30° relative to the horizontal, the second the number of 

substrokes between 30° and 60°, and so on. Euclidean distance 

matching is then used to recognize results by comparing feature 

vectors of the gestures. The authors report 100% recognition 

accuracy with a set of 9 different gesture types over a total of 

204 gestures collected from 3 users. 

Feature-based classifiers benefit from their relative 

simplicity compared to other forms of recognizers, allowing 

them to achieve very fast runtimes when the number of features 

computed is low. However, feature-based statistical classifiers 

are limited in that they make the assumption that gestures can 

be described by a mathematical formula derived from the 

features chosen for recognition. In cases where the gestures fit 

the model very nicely, high recognition rates are likely, but 

when they do not fit the model the recognition rates will likely 

be much lower. In previous work analyzing gesture articulation 

features of children’s gestures, high levels of variance have 

been found (Shaw and Anthony, 2016a). This high level of 

variance indicates that the models used by these feature-based 

statistical classifiers will probably not fit children’s gestures 

well, so we suggest that feature-based models will likely not be 

able to recognize children’s gestures with high accuracy. 

C. Hidden Markov Models (HMM) 

While both template matchers and feature-based statistical 

classifiers are relatively simple for developers to implement, we 

hypothesize that machine learning approaches can achieve 

much higher accuracy for children’s gestures. However, these 

machine learning approaches can be prohibitive since they 

require much larger datasets than the previously discussed 

methods. Two of the most common machine learning 
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approaches are Hidden Markov Model recognizers and Neural 

Networks. 

Hidden Markov Models (HMMs) can be used to recognize 

gestures by breaking the gesture into a series of points or strokes 

that are input to the HMM, then used to determine a recognition 

result based on prior training examples. HMMs describe 

probabilistic processes in which there are unseen (hidden) 

states. The HMM uses these states to compute the most likely 

sequence of inputs (Baum and Petrie, 1966). As with general 

Markov models, the transition from one state to the next 

depends on only the current state. The HMM uses a dynamic 

programming (Bellman, 1952) algorithm to determine the 

recognition result by matching the observed sequence of inputs 

to the best fit among training data. This method of sequential 

states is useful in gesture and handwriting recognition, wherein 

each stroke (or letter in the case of handwriting) can be treated 

as a separate state. HMMs are particularly well-suited for 

gesture recognition because they represent a statistical model of 

spatio-temporal data that can handle variations in the 

articulation of the gesture.  

Li and Leung (Xiaolin Li and Dit-Yan Yeung, 1997) 

presented an HMM-based recognizer that classifies constituent 

strokes of a gesture based on their position on the canvas, which 

serve as the states for the model. They report a recognition 

accuracy of 91% over a gesture set including 62 classes letters 

and numbers produced by 21 people. Sezgin and Davis (Sezgin 

and Davis, 2005) introduced an HMM-based recognition 

algorithm for sketches in which, as with the previous 

recognizer, each stroke of the sketch is treated as a state. In 

Sezgin and Davis’s (Sezgin and Davis, 2005) approach, 

however, a separate HMM represents each of the gesture types 

in the set. The algorithm then matches the observed sequence 

of states to the HMM that it most closely resembles. The authors 

report 96.5% after training HMMs on 10 different gesture types 

with a total of 6 examples each, from a total of 10 users. Jiang 

and Sun’s (Jiang and Sun, 2005) stroke-based HMM approach 

resulted in 95% recognition after being trained on 14,611 

gestures across 9 gesture types from 2 users. In contrast to other 

HMM-based recognizers, Anderson et al. (Anderson et al., 

2004) used individual points of gestures as the states in their 

HMM-based recognizer. The authors report an overall accuracy 

of 94.18% over 10 samples of 11 different gesture categories 

from a total of 3 participants.  

HMMs have also been used in handwriting at the level of 

recognizing words rather than characters. An example of an 

early system of this type is that of Chen (Chen, 1994), who used 

an HMM-based approach to recognize handwriting by first 

segmenting the word into individual letters then using each 

letter as a state in the model. The author reports 43.6% accuracy 

over 1,563 words from an unspecified number of users. The 

ability of HMM-based algorithms to recognize gestures from 

large corpuses has made them a popular choice for recognizing 

handwriting in many languages (Ahmed and Azeem, 2011; El-

hajj et al., 2005; Hu et al., 2000; Hu and Brown, 1996; 

Mohamad and Likforman-sulem, 2009; Nakai et al., 2001; Roy 

 
3 The exact number of digits is not reported. 

et al., 2015). Further information on the use of HMMs for 

handwriting recognition can be found in Plötz and Fink’s (Plötz 

and Fink, 2009) survey of the topic. 

HMMs have the advantage that they can achieve high 

accuracy even for very large gesture corpuses and sets. 

However, they can have high overhead due to the segmentation 

into states required to create and train the model, and training 

can require a large corpus of data, making their use impractical 

in some cases. In contrast to feature-based statistical classifiers 

and template matchers, HMM-based recognizers generally 

require that a developer have some knowledge of machine 

learning, thus making them less accessible to novice 

developers. However, we hypothesize that future work using 

HMM-based recognition of children’s gestures may be more 

accurate than that of template matchers or feature-based 

classifiers, especially since HMMs can account for some 

variations in the way the gesture is articulated. 

D. Neural Networks 

Another common machine learning based approach to 

recognizing gestures is through the use of neural networks. 

Neural networks consist of a number of nodes (or neurons) 

arranged in layers such that the output of one layer is received 

as input in the next layer, and so on until the final layer outputs 

a classification decision (Mitchell, 1997). While being trained, 

the network compares its output to the correct output and back-

propagates findings to the previous levels, allowing them to 

adjust the weights of the inputs used in their calculations, 

thereby improving their accuracy. Each node accepts numerical 

input values and then produces numerical output values. This 

can be applied to gesture recognition by feeding features 

calculated on the gesture in as input to the first layer of nodes. 

For example, a method used in recognizing handwritten digits 

is to convert each digit to an image, then treat it as an array of 

pixels where the RGB value of each pixel is sent to a different 

input layer. The first layer of nodes then performs computations 

on these values to feed to the next layer, and so on until a 

recognition result is reached  (Mitchell, 1997). Neural networks 

are well suited for achieving high accuracy rates in identifying 

gestures from very large sets with over 100 gesture types 

(Zhang et al., 2018). Neural networks can be used to recognize 

gestures by supplying the network with a large body of 

correctly identified gestures on which to train, as well as the 

features that should be used to determine the result. The neural 

network can then create a model based on the input and selected 

features that will classify further examples of the gestures. 

An early neural network-based recognizer was that of LeCun 

et al. (LeCun et al., 1990), which showed that back-propagation 

could be used to recognize handwritten digits from a large 

number of users. The authors report 90% recognition accuracy 

on a set of over 10,000 digits from multiple users3. Singh and 

Amin (Singh and Amin, 2014) used a neural network algorithm 

to recognize hand-printed characters, achieving 86% accuracy 

in recognizing characters from a set of 52 different characters 

from 21 writers by extracting primitive features such as straight 
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lines, curves, and loops. Lee et al. (Lee, 1996) described a 

neural network recognizer that recognizes single numerals with 

up to 99% accuracy on a set of 22,000 gestures of 22 different 

types from 9 participants. Another neural network recognition 

algorithm, though not used for handwriting/gesture recognition, 

was presented by Shrivastava and Sharma (Shrivastava and 

Sharma, 2012), which classified 360 computer-generated 

characters from 20 different  fonts with high accuracy (up to 

97%). As with Singh and Amin’s approach, Shrivastava and 

Sharma’s algorithm used an image-based method that extracts 

features of the gestures such as vertical and horizontal 

symmetry.  

Neural networks are beneficial in that, when they are applied 

to large gesture sets, they can obtain high accuracy. However, 

one of the main drawbacks to using neural networks, beyond 

the technical knowledge required to implement them, is the 

large amount of data required to train the recognizer. This 

presents a challenge in the domain of recognizing children’s 

gestures due to the lack of publicly available data and the 

difficulty involved in collecting new data from children (Punch, 

2002). However, given sufficient data, we hypothesize that 

neural networks will be able to achieve higher recognition than 

simpler methods due to their ability to adapt the model based 

on the variability seen in children’s gestures.  

E. Mixed Methods 

Several recognition algorithms employ a combination of the 

above techniques, allowing them to capitalize on the strong 

points of each, but also suffering from the overhead incurred by 

combining them. A notable example of a combined method is 

Kristensson and Zhai’s SHARK2 recognizer (Kristensson and 

Zhai, 2004; Zhai et al., 2012) for shorthand writing in pen-based 

computers, which uses a recognition pipeline including 

template pruning, that is, removing unneeded candidate 

gestures from the set of templates, and geometric analyses 

based on the shape of gestures produced when interacting with 

a digital keyboard. While the authors do not perform a 

recognition study, they do report a study showing that users are 

able to achieve fast word-entry rates using their system. Hong 

and Landay’s SATIN (Hong and Landay, 2000) also employs 

this mixed methods paradigm, using ten different interpreters in 

concert to produce a recognition result. The authors illustrate 

the use of their system in a sketch-based application for drawing 

circuits. Because the focus of the work is on the design of the 

system, the authors do not perform a recognition study. Yin and 

Sun (Yin and Sun, 2005) created a novel multi-stroke 

recognition algorithm using a template matching method based 

on minimum fitting supported by optimization via dynamic 

programming. The authors report 98% accuracy on a set of 100 

examples of each of 4 gesture types produced by 4 people. 

Alimoglu and Alpaydin (Alimoglu and Alpaydin, 1997) 

described a number of methods for incorporating multiple 

classifiers into a single recognizer, reporting improved rates for 

dynamic (mixed) recognizers over static, consistent with 

findings in other similar work (Gader et al., 1996; Verma et al., 

2001). The overall accuracy rate reported is 99.3% after training 

on 3,748 gestures from a total of 10 users. 

The advantages and disadvantages of using mixed methods 

for gesture recognition accuracy are largely determined by the 

types of recognizers included. Mixed methods allow an 

algorithm to capitalize on the parts of an algorithm that perform 

best depending on the type of input. However, the need to 

combine various recognizers adds additional overhead. The 

format of the input and output for each recognizer may also be 

different, so the developer may have the additional burden of 

converting the data between formats. However, because they 

could be configured to combine the aspects of the various types 

of recognizers that are best able to handle children’s gestures, 

we hypothesize that a mixed method recognizer may be likely 

to be able to achieve higher accuracy than any of the other 

categories. 

V. GESTURE ARTICULATION FEATURES AND ANALYSES 

As discussed earlier in this paper, it is still not fully clear what 

Feature Description Feature Description 

    

R1 Cosine of initial gesture angle L1 (Aspect) Absolute value of (45 – R4) 

R2 Sine of initial gesture angle L2 (Curviness) Sum of all angles less than 19°  

R3 Length of bounding box L3  R9 / R8 

R4 Angle of bounding box L4 (Density 1) R8 / R5 

R5 Distance between first and last point L5 (Density 2) R8 / R3 

R6 Cosine of angle between first and last point L6 (Openness) R5 / R3 

R7 Sine of angle between first and last point L7 Area of bounding box 

R8 Total gesture length L8 log(L7) 

R9 Total angle traversed L9 R9 / R10 

R10 Sum of absolute value of angles L10 log(R8) 

R11 Sum of squares of angle at each point L11 log(R11) 

R12 Max speed of gesture squared   

R13 Duration of gesture   

Table 5. The 13 features employed in Rubine’s (Rubine, 1991) recognizer (left) and the 11 features employed in 

Long et al.’s (Long et al., 2000) analysis (right). These features have been widely built on in creating new feature 

sets for new recognizers. 
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specific behaviors cause recognition to be poor for children’s 

gestures. To help further this understanding, prior work has 

employed analysis techniques to children’s gestures that had 

previously been used to gain a deeper understanding of adults’  

gestures. One method of exploring these gestures in more detail 

that has been employed by several studies has been the 

examination of articulation features of gestures produced by 

various types of users. Gesture features generally refer to some 

measure calculated on the gesture based on its geometric 

properties. Gesture articulation features are specifically 

designed to capture something about how the user has produced 

the gesture (Anthony et al., 2013b; Long et al., 1999). Gesture 

features can be directly employed by recognizers (e.g., feature 

based statistical recognizers), or indirectly affect recognition 

(e.g., in template matchers or other approaches), so it is 

important to study them to understand how to improve 

recognition rates. A thorough analysis might also help 

researchers understand what articulation patterns specifically 

cause recognition rates to be lower for children than adults. 

Features alone probably cannot fully explain recognition 

differences, but they do offer a starting point for further 

investigation.  

 Most work in the area of gesture articulation feature analysis 

has focused on adults (Blagojevic et al., 2010; Rubine, 1991; 

Vatavu et al., 2013a), though there have been a few exceptions, 

outlined in this section. There remains, however, a need for a 

more comprehensive study of gestures produced by all ages, 

particularly of very young children (e.g., younger than age 5), 

to provide a fuller characterization of children’s gesture 

articulation patterns. There are, unsurprisingly, a large number 

of features that have been employed to analyze and characterize 

adults’ touchscreen gestures. Three of the most popular sets of 

features include Rubine’s (Rubine, 1991), which were used for 

a feature based recognizer; Long et al.’s (Long et al., 2000) 

features, used for studying adults’ gestures; and Vatavu et al.’s 

relative accuracy measures (Vatavu et al., 2014), which provide 

a measure of consistency between two gestures of the same 

type. Many of the features in the latter two sets were adapted 

from Rubine’s features. Due to their importance in the 

literature, we provide a brief description of the features 

introduced by Rubine (Rubine, 1991) and Long et al. (Long et 

al., 2000) in Table 5, and Vatavu et al.’s (Vatavu et al., 2013a) 

relative accuracy measures are listed in Table 6. 

A. Children’s Gestures 

As previously mentioned, studies of the articulation features of 

children’s touchscreen gestures have been quite limited. 

Anthony et al. (Anthony et al., 2015) computed several 

“simple” and “complex” features of gestures of 10- to 17-year-

olds, as well as adults, examining the impact of age and visual 

feedback. The simple features were taken from previous work 

examining children’s gestures (Anthony et al., 2013b; Brown et 

al., 2013) and included, for example, number of strokes, gesture 

area, and gesture speed. Some of the complex features, which 

had previously been used only to examine adults’ gestures 

(Rubine, 1991; Vatavu et al., 2013a), included gesture 

sharpness and gesture curviness.  Age group did not have a 

significant effect on any of the nine simple (absolute) features 

and had a significant effect on only one of the seven complex 

(relative accuracy) features, according to a one-way ANOVA. 

Another study aiming to improve characterizations of 

children’s touchscreen gestures is that of Shaw and Anthony 

(Shaw and Anthony, 2016a), who analyzed gestures from 

children ages 5 to 10 years old, as well as adults. In the study, 

the authors calculated the values of 10 simple features 

calculated on a single gesture (Anthony et al., 2013b), such as 

the total length of the gesture and the area of the bounding box 

of the gesture, and 12 complex features (Vatavu et al., 2013a). 

In contrast to Anthony et al.’s (Anthony et al., 2015) analysis, 

Shaw and Anthony (Shaw and Anthony, 2016a) found a 

significant effect of age group on six of the 10 simple features 

and all 12 of the relative accuracy features. Furthermore, many 

of the features showed the same general trend of increasing with 

age, like recognition rates, helping to paint a partial picture of 

why recognition rates are so much lower for younger children 

than for older children and adults. For example, consider the 

size error feature, defined as the average distance between 

corresponding points of two gestures of the same type, which 

follows a similar pattern by age as recognition rates for the same 

Feature Description 

  

Shape Error The average deviation between two gestures based on Euclidean distance 

Shape Variability The standard deviation of the distances between the points of two gestures 

Length Error A measure of the inconsistency of lengths of strokes between two gestures 

Size Error A measure of the inconsistency between the areas of the bounding boxes of two gestures 

Bending Error The average of differences between corresponding turning angles of two gestures 

Bending Variability The standard deviation of differences between corresponding turning angles of two gestures of the same type 

Time Error The difference in the amount of time taken to articulate two gestures 

Time Variability The standard deviation of the differences of the timestamps of each individual point in a gesture 

R9 The standard deviation of the differences of the timestamps of each individual point in a gesture 

Speed Error The difference in speed of production of two gestures 

Speed Variability The standard deviation of differences in the speed of production of two gestures 

Stroke Count Error The difference in number of strokes of two gestures of the same type 

Stroke Ordering Error A measure of the inconsistency in the order that different strokes of a gesture are drawn 

Table 6. The relative accuracy features introduced by Vatavu et al. (Vatavu et al., 2013a). 
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gestures. Shaw and Anthony (Shaw and Anthony, 2016a) show 

that younger children’s gestures have a larger variation in size 

than older children, indicating less developed control in their 

articulation. This difference in size could, for example, cause 

recognition errors in recognizers that use size-based features as 

part of the recognition process. These articulation features help 

partially explain why older children’s gestures are better 

recognized than those of younger children. 

 The analyses presented in this section provide a starting point 

for understanding the articulation patterns exhibited by 

children, but further work is needed. Anthony et al. (Anthony 

et al., 2015) found that age group had a significant effect on 

only one feature in their study of 10- to 17-year-olds, while 

Shaw and Anthony’s (Shaw and Anthony, 2016a) analysis 

found a significant impact of age on most of the features in their 

study of 5- to 10-year-olds, showing that younger children are 

more inconsistent in their gesturing patterns than older children 

and adults. Further work should look at new features that could 

potentially aid in understanding children’s gestures in the 5- to 

10-year-old age group. Finally, children as young as two years 

old are using touchscreen devices (Ahearne et al., 2016), but 

there has thus far been no in-depth characterization of the 

articulation features in the 2- to 5-year-old age range. Support 

for children with motor impairments affecting dexterity and 

fine motor skills might also be improved by analyzing their 

gesture features. Thus, future work should address this area to 

help improve understanding of children’s touchscreen gesture 

articulation in order to improve recognition of their gestures. 

VI. SUMMARY AND FUTURE WORK 

In this paper, we have identified several open questions in 

gesture recognition. We now provide a summary of areas that 

we have described in this paper as well as areas for future work 

to improve the state of gesture interactions for children. 

 Our survey of existing work in gesture recognition for 

children has led us to several conclusions. Prior work has 

clearly not been sufficient to give a full idea of how existing 

recognizers perform on recognizing children’s gestures since 

only simple template matchers have been tested. Past work 

describes behavior in terms of articulation features that may 

affect recognition, but there has been no mapping between 

children’s gesture articulation behavior and recognition rates. 

Furthermore, the articulation features that have been used to 

examine children’s gestures have been the same as those used 

for adults’ gestures, but new articulation features based on 

children’s gesture interactions may help developers better 

understand why recognition rates are poor. 

 An obvious next step in gesture interaction for children is to 

compare non-template based recognizers’ performance in 

recognizing children’s gestures. Table 4 of this paper gives a 

sample of recognizers that could be evaluated on children’s 

gestures to improve the state of our understanding. 

 Based on our survey, we identify several areas for future 

work in gesture recognition for children, which we discuss here. 

 

Characterizing young children’s gestures. While there have 

been a number of studies characterizing children’s gestures, 

most have focused on children ages 5 and older. Thus, little is 

known about the articulation and interaction patterns of 

children of younger ages. However, children are using 

touchscreens at these young ages (Common Sense Media, 

2013), and are undergoing important developmental and 

physiological changes that could impact their touchscreen 

interactions in interesting and important ways. For example, 

young children in preschool are developing their writing skills 

and are developing their motor skills, which could impact 

gesture recognition. Improved characterizations of children’s 

gestures can help us understand the specific aspects of the 

gestures that cause them to be poorly recognized, allowing 

developers to improve recognition by accounting for these 

aspects. For example, an application could apply a correction as 

a preprocessing step or ignore certain parts of the gesture that 

exhibit high variance. 

 

Designing child-centered gesture sets. Traditional gesture 

sets have been designed for adults, but we have summarized 

prior work that has illustrated many ways in which children’s 

gestures are different. Elicitation and guessability studies for 

children using touchscreen devices could provide useful 

information for designing gesture-based applications for 

children, especially since children are more likely to try novel 

new gestures when interacting with touchscreen devices (Rust 

et al., 2014; Soni et al., 2019b). Considering children’s motor 

control development can also inform the design of better 

gesture sets. Furthermore, improved gesture set design could 

lead directly into improved recognition due to higher suitability 

for the target age groups. A new gesture set could be designed 

specifically to help children practice types of gestures that often 

cause them trouble.  

 

New metrics for understanding children’s gestures. A 

potential area for further exploration is the use of articulation 

features to help identify the specific behaviors that lead to poor 

recognition. For example, children often have trouble joining 

the ends of their strokes together, leading to large distances 

between endpoints that are intended to meet. A new articulation 

feature could be designed to quantify this behavior so that its 

relationships to recognition rates could be analyzed. In fact, this 

could be done using various recognizers to help establish which 

behaviors are correlated to their performance. 

 

Improving recognition rates for children. As we have 

established, children’s gestures are not recognized as well as 

those of adults. Thus, a major open area for future work is 

improving recognition rates. Existing gesture recognition 

algorithms have been designed to recognize adults’ gestures, 

but a child-centered recognizer could offer the opportunity to 

specifically address common patterns in children’s gestures. 

Most work on recognizing children’s gestures so far has used 

template matching approaches like $N and $P (Anthony and 

Wobbrock, 2012; Vatavu et al., 2012), which may be more 

susceptible to failure given the inconsistencies children exhibit. 

However, these recognizers were not intended to be state-of-

the-art approaches to recognition, but rather to be simple, easy 

to implement algorithms for rapid prototyping. Thus, we 
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encourage future work on other recognition approaches to 

understand how well state-of-the-art approaches can perform. 

Future work can examine other recognition approaches, and 

new mixed methods for recognizing children’s gestures.  

Another possible method of improving recognition accuracy for 

children’s gestures may be to employ some sort of 

preprocessing step in which the raw gesture data is transformed 

in some way. For example, consider the process of 

beautification (Julia and Faure, 1995). Beautification 

transforms raw input data into more aesthetically pleasing 

(“beautified”) input based on the geometric properties of the 

gesture. A beautification algorithm might, for example, 

examine each stroke and determine whether it most resembles 

a line or a curve, then transform the data to the correct shape. 

After each stroke is reshaped, the algorithm examines the 

relationships between the strokes to determine whether the 

strokes should be joined. The final, “beautified” gesture 

consists of perfect lines and curves and is more likely to 

resemble the canonical form of the gesture. This process may 

be more difficult for children’s gestures than for those of adults, 

but it may present an opportunity for obtaining significantly 

improved recognition results without development of a new 

recognizer. 

 

Supporting improved educational technology. Educational 

technology and intelligent tutoring systems are increasingly 

using gesture-based interactions and recognition. The 

widespread nature of touchscreen devices means that 

educational systems have the potential to offer meaningful 

instruction to children who may not have easy access to 

educational resources or personalized instruction. For example, 

a highly adaptive touchscreen tutoring system may be able to 

provide feedback to children when a personal tutor is not 

available. The tactile nature of touchscreen devices can serve as 

a natural benefit for children developing their motor skills 

(Lovato and Waxman, 2016), which educational systems can 

use to their advantage. A key area of research beyond 

improving recognition is to examine the best ways to leverage 

recognition systems to achieve the goals of improving 

educational experiences.  

Gesture interactions are an important component of 

touchscreen usage, and children’s gesture interactions present a 

particular challenge in that they are much less consistent than 

those of adults. Recent advances in our understanding of both 

children’s and adults’ gestures have significantly improved the 

state of touchscreen gesture interaction, but the low recognition 

rates for younger children’s gestures indicate a need for further 

examination of their gestures. Due to the small body of work on 

the recognition of children’s gestures, we have surveyed 

existing work on both children and adult’s gesture interactions 

with the intent to help motivate future areas of work that may 

lead to improved understanding of children’s behavior when 

making gestures. This improved understanding can, in turn, 

help inform future work on recognizing children’s gestures. 

Better recognition rates for children’s gesture interactions could 

have a number of benefits, especially pertaining to systems 

using intelligent gesture-based interfaces to support learning. 
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