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ABSTRACT
Motion-based applications are becoming increasingly popu-
lar among children and require accurate motion recognition
to ensure meaningful interactive experiences. However, mo-
tion recognizers are usually trained on adults’ motions. Chil-
dren and adults differ in terms of their body proportions and
development of their neuromuscular systems, so children
and adults will likely perform motions differently. Hence,
motion recognizers tailored to adults will likely perform
poorly for children. My PhD thesis will focus on identify-
ing features that characterize children’s and adults’ motions.
This set of features will provide a model that can be used
to understand children’s natural motion qualities and will
serve as the first step in tailoring recognizers to children’s
motions. This paper describes my past and ongoing work
toward this end and outlines the next steps in my PhD work.
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1 INTRODUCTION
The performance of motion recognition algorithms plays an
important role in users’ interactive experiences in motion-
based applications. For example, in games that combine phys-
ical activity with play (exertion games), the precision of mo-
tion recognition systems has been positively associated with
higher levels of immersion during game play [18]. These
applications are becoming increasingly popular among chil-
dren, so accurate recognition of child motion has become
more important to ensure they have meaningful interac-
tive experiences. However, motion-based recognizers usu-
ally have been trained on adults’ motions [9, 19, 28]. Chil-
dren and adults differ in terms of their body proportions
[12] and stages of development of their neuromuscular sys-
tems [24], so children and adults will likely perform mo-
tions differently. In fact, my past work has found that naïve
viewers can perceive differences between child and adult
motions at levels significantly above chance, even when the
motion is abstracted from all appearance cues [14]. These
findings establish that child motion differs from adult motion,
so motion recognition systems tailored to adults’ motions
will likely perform poorly for children’s motions. Further-
more, these findings suggest that there are motion qualities
present in children’s motions that distinguish them from
adults’ motions. However, these motion qualities are not
currently known, which makes tailoring motion recognizers
to children difficult.

My PhD thesis will focus on investigating the features that
characterize children’s and adults’ motion qualities, in order
to establish a set of features that quantifies the differences
between child and adult motions. Specifically, my thesis aims
to answer the following research questions:

(1) Can we identify features that characterize the simi-
larities and differences between children’s and adults’
motions?

(2) What inferences can we make from these features to
help tailor motion recognition systems to child mo-
tion?

(3) What information about children’s motion qualities
can improve immersion within motion-based applica-
tions, specifically, exertion games?
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The set of features identified in mywork will provide a model
that can be used to characterize children’s natural motion
qualities and will serve as the first step in tailoring recog-
nizers to children’s motions. Ultimately, this set of features
can help to improve children’s experiences when interacting
with motion-based applications (e.g., exertion games).

2 RELATEDWORK
I focus my review of prior work on human motion recog-
nition and stroke gesture recognition. Prior work in stroke
gesture recognition has investigated tailoring stroke gesture
recognizers to children’s gestures [23]. Therefore, I utilize
prior work in stroke gesture recognition to inform my ap-
proach in tailoring recognizers to children’s motions.

Human Motion Recognition
Human motion ranges from simple limb movements (e.g.,
wave) to whole-body movements involving multiple limbs
of the human body (e.g., walking). Recognition of human
motion has been studied extensively through traditional com-
puter vision approaches that rely on using pixels to recognize
motions from images and videos (i.e., vision-based human
action recognition) [9, 20]. Motion tracking devices, such as
theMicrosoft Kinect [17] provide accurate information about
poses (i.e., positioning of the body at a specific time instance)
and joint movements as users perform motions. With the
provision of this information, researchers have shifted focus
to approaches that rely on geometry of poses for recognition
[10, 19]. Lun and Zhao termed one approach to recognize
motions as template-based, which they defined as comparing
an unknown whole-body gesture to a set of pre-recorded
whole-body gesture templates using pattern recognition [16].
By their definition, this approach consists of recognizers
that utilize direct matching approaches (e.g., dynamic time
warping (DTW) [5]) and model-based approaches that uti-
lize machine learning (e.g., support vector machines (SVM)
[7]). Template-based motion recognizers, which are depen-
dent on features selected for pattern recognition, are prone
to recognition errors. For example, Riofrío et al. [19] had a
recognition error rate of 15.93% when using DTW and the
positions of 10 upper limb joints from the Kinect as features
to recognize upper limb motions (e.g., right hand sweep).
Therefore, features that reflect the distinctive characteristics
of motion are important for good recognition accuracy [16].
I plan to identify features that can be used to characterize
how children and adults make motions.

Tailoring Stroke Gesture Recognizers to Children’s
Gestures
Stroke gesture recognition researchers have found differ-
ences in how children and adults produce stroke gestures
[23, 27] and have thus investigated tailoring stroke gesture

recognizers to children’s gestures [23]. Prior work in stroke
gesture recognition has found that stroke gesture recogniz-
ers have lower recognition accuracies for children’s gestures
compared to adults’ gestures [3]. Anthony et al. compared
the recognition accuracy of stroke gestures produced by chil-
dren ages 7 to 16 and adults using the $N-protractor stroke
gesture recognizer [4] and found that, on average, children’s
gestures were recognized more poorly (81%) compared to
adults’ gestures (90%) [3]. Based on this finding, researchers
have suggested the need to tailor stroke gesture recognizers
to children’s motions. For example, Shaw et al. [23] investi-
gated the differences between children’s and adults’ stroke
gestures using features such as path length and production
time and found differences in several features. For example,
children exhibit longer path lengths and higher shape errors
compared to adults. The researchers also found that chil-
dren are more inconsistent in how they produce gestures as
characterized by higher variations in some of the features,
and this inconsistency causes higher recognition errors in
children’s gestures compared to adults’ gestures. Like stroke
gesture recognizers, motion recognizers will likely perform
poorly for children’s motions due to differences in how chil-
dren and adults perform motions [14]. I plan to analyze the
motion qualities of children and adults to better understand
how to tailor motion recognizers to children’s motions.

3 COMPLETEDWORK
In this section, I discuss some of the preliminary work I have
done to understand children’s motion qualities.

Creating a Dataset of Children’s and Adults’ Natural
Motions
To characterize how users perform motions, it is important
that my work focuses on natural motions to ensure that mo-
tion behaviors that are unique to children can be captured,
as opposed to scripted motions, which may not capture vari-
ations in how children and adults perform motions. How-
ever, due to a lack of publicly available datasets of children’s
natural motions, my first step was to acquire a dataset of
natural motions to analyze children’s motions and to allow
for comparison against adults’ motions. I helped collect the
Kinder-Gator dataset [1]; a dataset of 10 children and 10
adults performing 58 natural motions forward-facing the
Microsoft Kinect [17]. The Kinect v1 tracks the movement
of 20 joints in the body along 3-dimensions and at 30 frames
per second (fps). A critical aspect for the creation of the
dataset was to ensure that it encompassed a diverse range
of human motions. Hence, the 58 motions I helped collect
include: nine warm-up motions that are easy to perform
and are used in day to day activities (e.g., raise your hand),
fourteen exercise motions that induce exertion (e.g., run in
place), sixteen mime motions that are used to conceptualize
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Figure 1: Figure 1: Effect of action type and age group on step
time. Children generally move faster than adults.

imaginary objects (e.g., climbing an imaginary ladder), and
nineteen communication motions that are used for convey-
ing information (e.g., motion someone to stop). All future
research directions for my work will utilize this dataset.

Characterizing the Differences between Child and
Adult Motion using Gait Features
In my past work, we conducted a perception study to inves-
tigate if naïve viewers can perceive the differences between
child and adult motion when the motion is abstracted from
appearance cues [14]. Our results showed that naïve viewers
can perceive the difference between child and adult motion at
levels significantly above chance. Additionally, we found that
for dynamic motions, such as walking and running, naïve
viewers can perceive the differences between children and
adults with about 70% accuracy. These findings suggest that
there are perceivable cues that can be used to differentiate
child motion from adult motion. Hence, we hypothesized
that there are features that quantify these differences be-
tween children’s and adults’ motions. To test our hypothesis,
I initially concentrated on analyzing walking and running
motions, since naïve viewers in our perception study had
high accuracy for these motions [14]. Furthermore, the gait
literature has identified temporal (time) features and spatial
(distance) features that characterize walking and running
motions [13]. In our study, we selected four temporal fea-
tures (step width, step height, relative step height, and walk
ratio) and five spatial features (step time, cycle time, cycle
frequency, step speed, and cadence). We used these features
to analyze walking and running in the Kinder-Gator dataset
namely: walk in place, run in place, walk in place as fast

as you can, and run in place as fast as you can. For each
participant-motion pair, we computed the nine gait features
and used a repeated-measures Analysis of Variance (ANOVA)
to analyze the main effect of age group (child vs. adult) and
motion type. We found no significant differences between
children and adults for spatial features [2]. On the other hand,
we found a significant difference between child and adult
motions for all temporal features except step speed: children
complete walking and running motions in less time (Figure
1) and with higher energy compared to adults [2].

4 RESEARCH PLAN
Although the results above verify my hypothesis that there
are features that quantify the differences between children’s
and adults’ motions, it is difficult to generalize these fea-
tures to a broader set of motions because they are optimized
for analyzing gait and rely on the periodicity of the motion.
Therefore, gait features may not be suitable for motions that
are not periodic, such as exercise motions (e.g., “a jump" or
“kick"). Hence, I plan to identify features that are generaliz-
able to a broader set of motions. Vatavu et al. [25] proposed
spatial features that quantify how much users are moving in
space, kinematic features that quantify the time associated
with performing the motion, and appearance features that
quantify the expressiveness of the motion. These features
focus on describing the motions on a global level by focus-
ing on the poses (i.e., positioning of the body at a specific
time instance) that make up the motion. In addition to these
features, I plan to identify a set of features that will describe
motions on a joint level (geometric features). Geometric fea-
tures will quantify properties of the motion paths necessary
for performing the motions (e.g., length, shape, curvature). I
posit that exploring these four types of features (spatial, kine-
matic, appearance, and geometric) will provide knowledge
regarding motion characteristics (e.g., the degree of move-
ment of each joint), which can then be used to quantify the
differences between children’s and adults’ motion qualities.
In this section, I will describe my continued work and future
research directions to answer my research questions.

Prior research in stroke gesture recognition has found
differences between children’s and adults’ stroke gestures.
I posit that stroke gestures and motions share a representa-
tional similarity: stroke gestures consist of lines, curves, and
corners [6] with a point cloud representation in 2D space
while motions consist of poses with a point cloud repre-
sentation in 3D space. Therefore, both stroke gestures and
motions include a set of data points moving in space over
time, so methods from stroke gesture recognition to identify
geometric features can inform our research into identifying
geometric features that characterize whole-body motions.
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Simplifying Motion Representations
However, features from stroke gestures are not directly ap-
plicable to motions, since they differ in terms of number of
paths. Stroke gestures are defined by a single gesture path,
which is the path the finger takes on the surface over time.
In contrast, motions involve many joints with each joint
having a motion path; however, not all joints are essential to
the performance of the motion. For example, to raise one’s
hands, the hand and wrist joint are essential to the motion,
but the foot joint is not necessary for the performance of the
motion. Therefore, any motion path in the foot joint is either
due to tracking errors from the sensing device or uninten-
tional movements from the user, so utilizing the full set of
joints could lead to incorrect inferences regarding how users
perform motions.

For this reason, I identified the joints that users are actively
moving intentionally. I posited that these joints will have
higher movement variability compared to the movements in
joints that are moving unintentionally. To identify the joints
with higher variability, I computed the standard deviation of
the joint positions over time and partitioned the result into
two clusters using a K-means clustering algorithm [11]. I
selected the joints in the cluster with the higher mean as the
joints that the user is moving intentionally and simplified the
motion representation to include only these joints (filterJoint
representation). I applied the filterJoint and original repre-
sentations on a subset of 11 motions from the Kinder-Gator
dataset that [1] are non-overlapping in terms of motion type
and limb direction. Inspired by elements of stroke gesture
recognizers, such as $1 [26]), I developed a template-based
recognizer for motions and used this recognizer to compare
the accuracies of both representations. The recognition ac-
curacy is determined by matching a user’s motions to other
users’ motions, so it is an indication of between-user con-
sistency in motion. Therefore, a higher recognition accu-
racy implies that the representation includes features that
are more discriminative among motion types. I found that
our filterJoint representation achieved a significantly higher
recognition accuracy compared to the original representa-
tion (t(8) = 8.03; p < 0.001). This finding suggests that the
filterJoint representation is more suitable for understanding
how users perform motions. Furthermore, an investigation
of the degree of agreement in the actively moving joints,
calculated as the number of unique joint combinations used
to perform a motion, showed that adults exhibit significantly
higher levels of agreement compared to children (t(10) = 5.88;
p < 0.001). This finding suggests that children are more in-
consistent in how they perform motions compared to adults.

Identifying Features
My future research will involve identifying a set of features
that quantifies the geometric properties (e.g., length, shape,
curvature) of the paths in the filterJoint representation. This
set of features will enable an understanding of the variations
in how adults and children move joints during the motion.
For example, a feature can measure the degree of difference
between the shape of users’ motion paths and the shapes of
a representative set of motion paths, created by averaging
across the motion paths of participants. If children have a
higher degree of difference compared to adults, then this
would mean that children are more inconsistent in how they
move their joints. Once I have identified all geometric fea-
tures, I will use an Analysis of Variance (ANOVA) to check
the effect of category (child vs. adult) using motions from
the Kinder-Gator dataset [1]. The features with a signifi-
cant difference are the features that effectively quantify the
differences between child and adult motion.

Validating Features
For validation, I will use all the features (geometric, spatial,
kinematic, appearance) to train a binary classifier (classes:
child, adult) to explore the relationship between the most dis-
criminative features from the classifier and the features with
significant differences between children and adults based on
the results from our statistical test. My expectation is that
the most discriminative features should correspond to the
features that show significant differences and the least dis-
criminative features should correspond to features with no
significant differences. After this validation, we will be able
to fully understand the similarities between children’s and
adults’ motions (RQ1). For the validation, I plan to consider
different machine learning classifiers, such as Support Vector
Machines (SVM [7]), since this classifier has been used in
the motion recognition literature to classify motions [22],
k-nearest neighbor [8], and decision trees [21].

Tailoring Motion Recognizers to Children’s Motion
Qualities
The next step will be to make inferences about how children
perform motions. Specifically, I want to explore the relation-
ship between age and type of motion being performed and
consistency in how children performmotions. To accomplish
this, I will analyze child and adult motions based on the fea-
tures that I find to be different between children and adults.
This analysis will involve conducting a repeated measures
ANOVA on each feature with a within-subjects factor of
motion type and between-subjects factor of age; children in
the Kinder-Gator dataset [1] have ages in the range of 5 to 9.
The results from this test will provide information regarding:
(a) if any children within this range (5 to 9) perform motions
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consistently like adults, (b) the motions which children tend
to perform consistently regardless of their ages, and (c) the
age groupings in which children share the most similarity
in how they perform motions. I will use this information
to extend motion recognition systems to children’s motion
qualities (RQ2). For example, if the results show that younger
children perform motions similarly to each other but differ-
ently from older children, then this may imply that motion
recognizers may need to consider age groupings during the
recognition process. For example, template-based recogniz-
ers can include weights during the matching process so that
children’s motions are more likely to be matched to motions
from children with similar age groupings.

Improving Immersion in Exergames
Prior work has associated precision of motion recognition
systems to increased immersion within exergames. To inves-
tigate the effect of motion recognition systems on children’s
immersion when interacting with exergames, I will extend
an existing exertion game to either include a standard mo-
tion recognizer trained on adults’ motions or the motion
recognizer tailored to children’s motions (RQ3). Next, I will
conduct a within-subjects experiment wherein children’s
immersion will be measured after interacting with both ex-
ergames. Prior work has asserted that immersion in games
can be measured subjectively using questionnaires and ob-
jectively using task completion times [15]. I plan to use both
approaches to measure children’s immersion in exergames.

Conclusion
My work thus far has established that children’s motions
differ from adults’ motions. My continued work will identify
the features that characterize the differences between child
and adult motions and extend motion recognition algorithms
to children’s motion qualities. Features identified from my
research have the potential to improve recognition of chil-
dren’s motions and improve children’s immersion within
exertion games.
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