

Bridging Educational Programming
and Production Languages

Abstract
Computer science skills are ever more important in
modern society as computers become integrated into
practically all occupations and professions. Researchers
have been developing learning tools, particularly
educational programming environments, to facilitate
the learning of computer science concepts at younger
ages. These tools have made significant gains in
engaging a younger audience and making programming
more accessible by incorporating visual elements, drag-
and-drop program construction, and media-rich
environments. Some platforms are friendly for young
children, but lack programmatic complexity, while
others lack the accessibility necessary for learners in
grades K-8. Thus, current tools lack a unified bridge
from early educational to practical, applied
programming environments. An age-appropriate bridge
could facilitate transfer of knowledge and skills by
applying techniques shown to encourage such transfer
in learning science research.

Author Keywords
Computer Science Education, programming
environments, programming languages, transfer.

ACM Classification Keywords
K.3.2 Computers and Information Science Education.

Copyright held by the author(s).

Jeremiah Blanchard
Dept of CISE
University of Florida
Gainesville, FL 32611, USA
jblanch@cise.ufl.edu

Christina Gardner-McCune
Dept of CISE
University of Florida
Gainesville, FL 32611, USA
gmccune@ufl.edu

Lisa Anthony
Dept of CISE
University of Florida
Gainesville, FL 32611, USA
lanthony@cise.ufl.edu

Introduction
Algorithmic thinking and reasoning are becoming more
important over time, even for non-computer scientists,
as we become more dependent as a society on
computer technology [1]. There is also an enormous
need for software developers that is expected to
continue to grow [2], and basic programming skills are
desirable in many technical and non-technical fields
(science, business analytics, animation, and design, for
example). Educational programming environments –
especially those focused on facilitating the learning of
novice programmers – provide an important path into
the discipline of computer science for learners. The
designers of these environments have aimed to make
their platforms accessible to lay audiences and
particularly children [3]. By making programming more
accessible, such environments can facilitate interest in
computer science and programming in school-age
children [4], and skills learned can transfer to
languages used in production settings [5]. Currently,
most such environments focus on elementary and
middle school students (e.g., Scratch) or late high
school and college freshmen students (e.g., Alice), and
transfer does not always occur when switching contexts
[6]. If constructed mindfully, a bridge that facilitates
transfer from childhood educational environments to
practical, applied languages could be established. This
would facilitate growth of a larger and more qualified
candidate pool to address the growing need for
individuals skilled in programming.

Background
Work to establish environments to encourage
computational thinking and programming dates back
most notably to the design and development of Logo by
Seymour Papert and his colleagues [7]. In developing

Logo, Papert argued that procedural thinking can
benefit children by encouraging metacognition (thinking
about thinking), in addition to enabling programming in
a computer-rich world, and sought to create a math
environment where students could explore and learn
mathematics through programming in a way that is
easy to pick up [3]. Current work continues building on
Papert’s vision; we detail 3 of the most popular tools.

Scratch
Scratch began in 2003 and is developed at the Lifelong
Kindergarten group of the MIT Media Lab. Its creators
include former members of Papert's MIT Logo Lab. It
was designed as a networked programming
environment built to reach economically disadvantaged
youth at after-school centers with a focus on the 8 to
16 age range [8]. Scratch's interface uses graphical
drag-and-drop statements, variables, and control
structures (Figure 1a). Scratch also incorporates color-
coded and distinctly shaped programming blocks.
Scratch has been shown to engage at-risk city youth,
encouraging expression and creative thinking [9].

Alice
The Alice project began in 1995 as a research initiative
focused on 3D environments at the University of
Virginia [10]. Alice focuses on late high school and
early college age groups [8]. By the year 2000, Alice
was being used to teach introductory programming
concepts [11]. A branch known as Storytelling Alice
(and later Looking Glass) was also developed to engage
girls in programming [12]. Like Scratch, Alice uses a
graphical, drag-and-drop object-oriented language
interface with a scene display (Figure 1b), and program
execution results are viewable in the scene without
compilation. Alice 3 introduced several changes to

 (a) (b)

 (c) (d)

Figure 1: Screenshots of (a) Scratch, (b) Alice, (c) Greenfoot, and (d) Eclipse IDEs.

facilitate Java language learning that have yielded
improvements in performance in early computer
science (CS1) courses [5]. The Alice project is ongoing.

Greenfoot
Greenfoot has been developed at the University of Kent
since 2005 [13]. Greenfoot differs from Alice and

Scratch in that it uses both graphical and textual modes
for source code entry. Class relationships and scene
object positions are manipulated using a mouse-driven
interface, while class definitions are written directly in
Java code (Figure 1c). Greenfoot also incorporates a
debugger and is targeted for ages 14 and older.

Bridging
Although these tools have shown great promise in
exposing younger audiences to computer science and
computational thinking concepts, what is still lacking is
that bridge from the simplified and abstracted
languages and tools targeted to K-8 students to more
advanced, complex environments. These more
advanced environments have shown success at the
high school and college levels in transitioning students
to production programming languages used by
programmers today such as Java and the more
complex IDE tools used for these languages (e.g.,
Eclipse, Figure 1d). In addition, many transition tools
(like Greenfoot) target Java, whose syntax may be
more difficult for beginners than some alternatives
[14]. A bridge would facilitate transfer of knowledge
and skill from the early educational environments to an
applied one while remaining accessible. This bridge
could be explicit scaffolding that facilitates movement
from existing educational environments to production
languages, or a completely new environment developed
explicitly to grow with students as their cognitive
abilities mature. We propose that the robust and
effective development of such a bridge presents a key
research challenge of making “every child a coder.”

References
1. Wing, J.M. Computational thinking.

Communications of the ACM 49, 3 (2006), 33-35.

2. U.S. Department of Labor, Bureau of Labor
Statistics. 2014. Occupational outlook handbook,
2014-15: Software developers.

3. Papert, S. Mindstorms: children, computers, and
powerful ideas. Basic Books, Inc., 1980.

4. Nikiforos, S., Kontomaris, C., and Chorianopoulos,
K. MIT Scratch: A Powerful tool for improving

teaching of programming. In Proc. 5th Conference
on Informatics in Education 2013, (2013).

5. Dann, W. et al. Mediated transfer: Alice 3 to Java.
In Proc. SIGCSE 2012, (2012), 141–146.

6. Perkins, D.N. and Salomon, G. Transfer of
Learning. International encyclopedia of education
2nd ed, Pergamon Press (1994), 6452–6457.

7. Logo Foundation. What is Logo? Retrieved March
29, 2015 from http://el.media.mit.edu/logo-
foundation/logo/index.html.

8. Utting, I., Cooper, S., and Kölling, M. Alice,
greenfoot, and scratch--a discussion. ACM TOCE
10, 4 (2010), 1–11.

9. Peppler, K.A. and Kafai, Y.B. Collaboration,
computation, and creativity: Media arts practices in
urban youth culture. In Proc. CSCL 2007, (2007),
586–588.

10. Pausch, R. et al. A brief architectural overview of
Alice, a rapid prototyping system for virtual reality.
IEEE Computer Graphics and Applications
Magazine, 1995.

11. Cooper, S., Dann, W., and Pausch, R. Alice: a 3-D
tool for introductory programming concepts.
Journal of Computing Sciences in Colleges 15,
(2000), 107–116.

12. Kelleher, C., Pausch, R., and Kiesler, S. Storytelling
alice motivates middle school girls to learn
computer programming. In Proc. CHI 2007, (2007),
1455-1464.

13. Kölling, M. and Henriksen, P. Game Programming
in Introductory Courses with Direct State
Manipulation. ACM SIGCSE Bulletin 37, 3 (2005),
59-63.

14. Agarwal, K., Agarwal, A., and Celebi, M. Python
puts a squeeze on java for CS0 and beyond.
Journal of Computing Sciences in Colleges 23,
(2008), 49–57.

