
Amphibian: Dual-Modality Representation in
Integrated Development Environments

Jeremiah Blanchard
Department of CISE
University of Florida

Gainesville, FL, USA
jjb@eng.ufl.edu

Chistina Gardner-McCune
Department of CISE
University of Florida
Gainesville, FL, USA

gmccune@ufl.edu

Lisa Anthony
Department of CISE
University of Florida

Gainesville, FL, USA
lanthony@cise.ufl.edu

Abstract— A significant challenge to using dual-modality

environments in instruction is that existing dual-modality

representations are built into sandbox environments with

functionality tailored to a specific purpose (such as Pencil Code’s

turtle graphics). However, students in introductory programming

classes usually use an Integrated Development Environment

(IDE), a software application that provides a suite of tools for

programming support. The use of IDEs is common in industry,

and thus they bring additional authenticity and scaffolding to the

learning experience. We developed an IDE plugin, Amphibian,

from Pencil Code’s Droplet Editor to enable switching between

blocks and text within IntelliJ IDEA, a common IDE for the Java

language. This plugin allows teachers of Java courses, including

those of AP CS and in colleges, to incorporate dual-modality

representation into their curriculum. It also enables more rigorous

research into use of dual-modality environments in classrooms by

facilitating use within existing curricula, allowing researchers to

remove potentially confounding variables, such as use of different

languages, software systems, and development environments.

Keywords—Computer Science Education, blocks-based
programming environments, programming languages, novice
programmers, dual-modality representation, integrated development
environments, IDE, Amphibian.

I. INTRODUCTION

A significant challenge to using dual-modality
representation in instruction is that the dual-modality tools have
been built into sandbox environments with functionality tailored
to a specific purpose. For example, Tiled Grace and Pencil Code
are two website-based environments that allow students to
program in the browser without any additional tools, but
programs are limited to their custom turtle-graphics sandbox
features [1], [2]; users cannot use other standard or third-party
libraries and features. However, students in introductory
programming classes at the college level usually use an
Integrated Development Environment (IDE) which provides a
suite of tools for programming support, including integration of
standard language libraries. The use of IDEs is common in
industry, and thus they bring additional authenticity to the
learning experience. As such, we could facilitate instruction and
research via dual-modality representations in existing college-
level curricula by integrating dual-modality tools within these
general-purpose development environments.

At the time we began our work, there were no dual-modality
tools for standalone IDE-based development outside of tailored
sandbox environments, so we developed a plugin for IntelliJ
IDEA based on Pencil Code’s online open-source Droplet Editor
[3], [4]. Matsuzawa et al. previously developed a blocks-text

tool for a subset of the Java language, but this was also limited
to a turtle-graphics environment [5]. The plugin that we
developed, which we dubbed Amphibian [6], enables instructors
to more easily incorporate dual-modality instruction into courses
and enables more rigorous investigation of dual-modality
representations in classrooms by allowing researchers to reduce
other potentially confounding variables, such as use of different
languages, software systems, and development environments.

The Droplet Editor’s extensibility allowed us to integrate the
language of our choice into Amphibian. We noted that many
introductory computer science programs at the high school and
college levels, including those at our institution, use Java as the
target language. To facilitate practical study of CS1 student
performance in a “real-world” environment, we focused
development on a Java variant. Amphibian allows users to
switch back and forth between text and blocks modes, thereby
enabling teachers of Java courses, including those of AP CS and
many introductory college courses, to build blocks/text
transitions into curricula.

II. USING THE AMPHIBIAN PLUGIN

Amphibian uses IntelliJ’s plugin API and can be installed in
the same manner as other plugins. Once installed, Amphibian
adds two tabs to the bottom of the editor pane of any Java file
(Figure 1a). The tabs allow users to switch between the text of
a program (Text Mode), which is the default mode upon startup,
and its blocks representation (Blocks Mode), and back again.

In Text Mode, the editor retains all features of the IDE’s text
editor, including syntax highlighting, prediction, error
identification, recommendations, and code region identification.

Figure 1. Amphibian Blocks Mode editor showing a) tabs for switching
between modes, b)� EORFN� WRROER[� IURP� ZKLFK� XVHUV� FDQ� GUDJ� DQG� GURS�
FRQVWUXFWV��and c) EORFNV�UHSUHVHQWDWLRQ�RI�WKH�FXUUHQW�SURJUDP�

 a)

b) c)

2019 IEEE Blocks and Beyond Workshop

978-1-7281-4849-6/19/$31.00 ©2019 IEEE 83

When the “Blocks” tab is selected, the editor switches to Blocks
Mode, which uses the Droplet Editor to present a toolbox from
which blocks can be dragged to add them to the program (Figure

1b) as well as display and enable editing of blocks-based
constructs (Figure 1c). When in Blocks Mode, the program can
be modified by adding new blocks to the program, with correct
constructions signified by the puzzle piece style snap-together
construction often used in blocks-based environments. Text in
light-colored areas may be edited directly; in the case of variable
value assignment, users may also drag-and-drop blocks
representing variables / objects. At any time, a user can change
modes using the same tabs.

To facilitate Java programming specifically, we added
object-oriented blocks, including classes and methods (Figure

2a), while access modifiers such as “public” and “private” can
be selected from dropdown components on the blocks
themselves. Similarly, built-in variable types for parameters of
variables can be selected from a dropdown menu on the blocks
(Figure 2b), and users can enter text for custom and imported
types. Whenever a block is added to the program via the drag-
and-drop interface, the embedded Droplet Editor variant adds
the construct to the program’s text and its blocks-based
representation in real-time.

It is important to note that, as the plugin only changes the
interface for editing the program, all IDE features remain
available. Users can follow the typical workflow to build and
run programs, including developing and running unit tests. Any
Java project can be used with the plugin, including typical text-
based and graphical applications, Android apps, and libraries.

III. ARCHITECTURE

Amphibian was developed in two distinct phases. In one, we
incorporated the Java language into Droplet, and in another, we
developed the plugin into which we embedded Droplet.

A. Droplet Editor

To enable Droplet to process Java language constructs, we
integrated a customized Java language parser. To do so we
constructed a custom variant of the Java 9 grammar specification
and used ANTLR [7] to generate a parser program. Once the
parser was in place, we developed a Droplet “palette” – a set of
blocks-text mappings – for Java language constructs, including

control structures, common statements, and object-oriented
constructs such as classes and methods.

B. IntelliJ Plugin

The plugin connects to two major IntelliJ systems: the User
Interface (UI) and the Document Manager (Figure 3).
Whenever a Java file is opened, Amphibian adds the “Blocks”
and “Text” tabs to the standard text editor. At the same time, in
the background the blocks editor is loaded. This is accomplished
by embedding a browser component via JxBrowser [8], which
is preloaded with the Droplet Editor variant and custom
JavaScript files, that can receive notifications from the plugin.
When the user is in Text Mode and the “Blocks” tab is selected,
an event is sent to the Droplet Editor which includes the current
document text state. The text is loaded and processed, after
which the embedded browser is displayed in the UI. The Java
parser can interpret incomplete programs as blocks even when
some constructs are missing. However, if the text syntax cannot
be parsed due to irrecoverable errors, such as missing brackets,
a modal dialog is shown to the user indicating the syntax error
and directing the user to fix it in text mode. Otherwise, the
browser editor window is shown, and user can edit the program
using the blocks interface.

Any time the toolbox palette changes or a block is dragged
or dropped, the event is sent to the log. This log entry by default
is displayed in the console, but the plugin can be configured to
forward the message to a remote server. In addition, whenever
the program is changed, the updated text is sent to the IntelliJ
Document Manager. This ensures that the program text is
synchronized between Blocks Mode and Text Mode (the
standard IDE text editor). In addition, this means that there is
always a text representation of the blocks; incomplete programs
will not prevent conversion from blocks to text. When the text
tab is selected from within Blocks Mode, the current text state is
sent one last time to the IntelliJ Document Manager and the
display is changed back to the default text editor for the IDE.

IV. FUTURE WORK

Future work on the Amphibian plugin will include adding
support for more programming languages, which is easily
enabled by the Droplet Editor’s extensible architecture. In
particular, some institutions and curricula have moved to Python
as a first text language [9], [10], and in our prior work we added
a Python variant to Pencil Code [11]. As such, we intend to
integrate the Python language into the plugin and potentially
other languages as well. We have also completed prototype
work on a Visual Studio variant of Amphibian, which we intend
to release after a production variant is completed. Finally, we are
using Amphibian to study the use of dual-modality
representations in Computer Science Education, especially its
effect on learner perceptions and performance among those
learning to program for the first time.

Figure 3. Amphibian architecture with new elements highlighted in gray:
a) Modifications to the Droplet Editor and b) Architecture of the IntelliJ Plugin.

a)

Figure 2. Amphibian Blocks Mode editor showing a) Java object-oriented
constructs and b) drop-down menus used for types and modifiers.

a) b)

b)

84

ACKNOWLEDGEMENTS
We extend our thanks to Jackson Yelenik, Benjamin King,

and Trevor Lory who developed parts of the plugin architecture
during their capstone project as undergraduate students.

REFERENCES
[1] M. Homer and J. Noble, “Lessons in combining block-based and textual�

programming,” J. Vis. Lang. Sentient Syst., vol. 3, no. 1, pp. 22–39, 2017.

[2] D. A. Bau, D. A. Bau, C. S. Pickens, and M. Dawson, “Pencil code: Block�
code for a text world,” in Proceedings of the 14th International

Conference on Interaction Design and Children, 2015, pp. 445–448.

[3] “IntelliJ IDEA.” [Online]. Available: https://www.jetbrains.com/idea/.

[4] D. Bau, “Droplet, a blocks-based editor for text code,” J. Comput. Sci.
Coll., vol. 30, no. 6, pp. 138–144, 2015.

[5] Y. Matsuzawa, T. Ohata, M. Sugiura, and S. Sakai, “Language migration
in non-CS introductory programming through mutual language
translation environment basic function and interface,” in Proceedings of

the 46th ACM Technical Symposium on Computer Science Education,
pp. 185–190, 2015.

[6] “Amphibian Plugin,” 2019. [Online]. Available: https://github.com/
cacticouncil/amphibian

[7] T. J. Parr and R. W. Quong, “ANTLR: A predicated‐LL(k) parser
generator,” Softw. Pract. Exp., vol. 25, no. 7, pp. 789–810, 1995.

[8] “JxBrowser.” [Online]. Available: https://www.teamdev.com/jxbrowser.

[9] R. J. Enbody, W. F. Punch, and M. McCullen, “Python CS1 as
preparation for C++ CS2,” ACM SIGCSE Bull., vol. 41, no. 1, pp. 116–
120, 2009.

[10] D. Garcia, “CS10: The Beauty and Joy of Computing,” 2019. [Online].
Available: https://cs10.org/fa19/.

[11] J. Blanchard, C. Gardner-McCune, and L. Anthony, “Effects of Code
Representation on Student Perceptions and Attitudes Toward
Programming,” in 2019 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp. 127–131.

85

