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Blocks-based programming environments have become commonplace in introductory 

computing courses in K-12 schools and some college level courses. In comparison, most college-

level introductory computer science courses teach students text-based languages which are more 

commonly used in industry and research. However, the literature provides evidence that students 

may face difficulty moving to text-based programming environments even when moving from 

blocks-based environments, and some perceive blocks-based environments as inauthentic. Bi-

directional dual-modality programming environments, which provide multiple representations of 

programming language constructs (such as blocks and text) and allow students to transition 

between them freely, offer a potential solution to issues of authenticity and syntax challenges for 

novices and those with prior experience in blocks by making clear the connection between 

blocks and text representations of programs. While previous research has investigated transition 

from blocks-based to textual environments, there is limited research on dual-modality 

programming environments. 

The goal of my dissertation work is to identify how use of bi-directional dual-modality 

programming environments connects with learning in introductory programming instruction at 
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the college level. I have developed a bi-directional dual-modality Java language plugin and 

evaluated the use of said tool within an introductory computer science (CS1) course. In my work 

I analyzed understanding and retention of specific computing / programming concepts, how any 

connections vary according to prior programming experience, and in what ways dual-modality 

programming environments affect the classroom learning experience.
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CHAPTER 1 
INTRODUCTION 

When learning computer science, students must master several skills, including 

computational thinking, fundamentals of programming, and computer science theory [125]. To 

practically apply computer science skills, students must work in a language’s semantic structure 

and syntax while learning about programming environments. They must also progress through 

stages of expertise over time. To draw on the Neo-Piagetian framework, students must develop 

expertise in programming by moving from the sensorimotor stage (in which they know what a 

program does, but not how it does it) to later concrete and formal operational stages (in which 

they can understand programs by breaking them into chunks and considering their abstract 

function) [71]. Finally, students must be able to translate their ideas into code that runs within the 

target environment. 

Computer science instructors and educational researchers have recognized the positive 

role that appropriate scaffolding can play in programming instruction to help address these 

challenges; this has motivated the development of instructional programming environments to 

scaffold the learning of computational thinking [58]. For example, blocks-based environments, 

such as Scratch and Alice, were developed by researchers in computer science education to 

decouple the learning of syntax from programming, computational thinking, and computer 

science theory by allowing students to program without text, eliminating syntax barriers [54, 30, 

77]. The elimination of syntax errors may contribute to a reduction in student cognitive load, 

allowing students to master computational thinking skills without needing to master syntax at the 

same time [72]. While blocks-based environments have shown promise in improving learning 

and perception by obviating syntax issues [89, 31], they do not currently address syntax 

challenges students must ultimately face when transitioning to production language 



 

17 

environments. Dual-modality programming environments, such as Pencil Code and its Droplet 

Editor, may be able to help bridge this understanding and help students delve into syntax by 

providing blocks and text representations of the same program [8, 7]. In my dissertation work, I 

investigate the use of blocks, text, and especially dual-modality programming environments for 

introductory CS learners at varied stages of their education, culminating in a study to evaluate 

how and if the use of dual-modality instruction in CS1 courses correlates with learning and how 

said instruction affects the classroom experience. 

1.1 Research Motivation 

My motivation to conduct computer science education research springs from my 

experience teaching in K-12 classrooms and at the college level, especially concerning 

accessibility of computing education. Much of my early work focused on students’ perceptions 

of programming and constructs (e.g., loops, variables, blocks). I explored how these perceptions 

related to student motivations, interest in, and learning of, computer science in blocks-based 

environments. As researchers began to note challenges that remained even when moving from 

blocks-based to text-based environments (such as difficulty learning syntax) [134], the focus of 

my work shifted to analyzing the perceptions of blocks and text. 

My recent work aims to identify how to alleviate those remaining challenges (in student 

perception and learning) when transitioning from blocks to text, particularly in the CS1 course 

that I teach. Programming instruction has traditionally made use of text-based production 

languages [124], such as C++ [1], Java [111], and Python [38]. While this has the benefit of 

anchoring instruction in practical languages used in the industry, it presents difficulties for 

students. Even for languages with simple structure, syntax errors and semantics are a hurdle 

[136]. These language challenges are coupled with learning computational thinking and basic 

computer science theory, which compounds cognitive load in early CS instruction [72, 87]. 
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Blocks-based languages are also now frequently used to teach computing in K-12 

classrooms, so many students enter early programming courses with blocks-based experience 

(Figure 1-1) [10]. However, research accounts suggest that, even when starting in blocks, some 

students nevertheless struggle with the same syntax challenges of text-based languages as 

learners who begin learning in text [74]. In particular, students who move from blocks to text 

have noted the disparity in difficulty between some blocks-based environments and text-based 

languages [74]; my early work (outlined in later sections) provides evidence that students who 

move from blocks directly to text perceive text-based programming as more frustrating than 

those who work only in text from the start. Student frustration may also stem from an inability to 

connect blocks constructs and their text counterparts. 

Dual-modality block-text systems, offering both text and blocks-based representations, 

were developed to provide a connection for students between blocks-based representations 

common in learning environments and text used in production languages [7]. These 

environments offer promise in that they may be able to help students overcome syntax challenges 

and reinforce semantics when moving between blocks-based and text-based representations. By 

linking textual and blocks-based modes of the same language, dual-modality blocks-text systems 

may facilitate chunking and abstraction in text [71] by visually nesting code blocks, such as 

function or condition constructs. 

 
 

Figure 1-1.  “Hello world!” program in Scratch (blocks-based) and C (text-based). 

 

int main() 
{ 
    printf("Hello world!"); 
    return EXIT_SUCCESS; 
} 
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1.2 Research Opportunities 

Dual-modality programming environments are relatively new developments and there is 

limited research into their effectiveness and connection to learning, with only a small number of 

studies conducted, and many of those on a small scale [136, 134, 9]. In particular, David Bau’s 

work with Pencil Code – an educational, web-based programming platform – studied how 

students use bidirectional dual-modality programming environments [9]. Bau conducted a study 

with eight public middle school students across four after-school sessions who had no prior 

programming experience. Students were permitted to freely use blocks and text modes. While on 

the first day, all students used blocks most of the time, they progressed to using text more often 

each day. By the last day, they were working in text 95% of the time, of their own volition. It is 

possible that this transition occurred because students became more confident working in text, 

suggesting that they no longer perceived text as intimidating. While Bau’s work did not directly 

address perception or learning, it did offer insight by providing evidence that suggested the 

students became more accustomed to text representations in dual-modality programming 

environments. 

David Weintrop’s is among the most comprehensive body of work on the subject of dual-

modality programming environments [136, 134]; he studied students moving from dual-modality 

programming environments to text-only development. Weintrop’s study was conducted over the 

course of a year with 90 students enrolled in a public high school’s introductory programming 

class. Weintrop developed mechanisms – assessments, surveys, and tool log files – to measure 

student attitudes, perceptions, and conceptual understanding in blocks and text modes. His work 

also compared how student experiences differ by starting in pure-text, pure-blocks, and dual-

modality programming environments before moving to pure-text environments. Weintrop’s 

studies suggest that dual-modality programming environments provide some of the affordances 



 

20 

of both blocks and text – they helped foster confidence in students (like blocks) but are also 

perceived as authentic programming experiences (like text languages). The dual-modality 

programming environment used a different language (JavaScript) than the development in pure 

text (Java) [134] due to the curricular requirement to teach in Java and tool limitations (which 

were only available at the time in JavaScript and CoffeeScript variants). 

These important studies open new questions and opportunities for research. It is an open 

question as to whether changing languages in addition to changing environment modes–as was 

done in Weintrop’s study–may constitute a significantly higher cognitive load [118] than merely 

transitioning from a dual-modality programming environment to a text-based one. It may also 

inhibit transfer [126], as the differences between the languages could constitute farther transfer 

[6] in comparison to working within the same language, but merely a different environment. As 

blocks-based languages are now frequently used to teach computing in K-12 classrooms [10], an 

evaluation of dual-modality programming environments–and in what ways they provide an 

effective bridge to text–is particularly useful at the college level, where most students first 

encounter textual languages. 

1.3 Research Questions & Hypotheses 

Previous work studying dual-modality and multimodal environments opened new 

questions to explore regarding their potential use and place in education which have explored as 

part of this dissertation. Specifically, my work addresses the following open questions in the 

literature: 

RQ1. How do students perform in code reading and writing after learning with 

dual-modality instruction, as compared to students learning with traditional (text-based) 

approaches to instruction in CS1 courses? Learners progress through multiple stages of 

development as they grow via problem solving practice to eventually become experts [71]. The 
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benefits of dual-modality compared to pure-text environments are likely to differ depending on 

the student’s current state of cognitive development. Some research has been done to evaluate 

student perceptions and patterns in classrooms using dual-modality programming environments 

[134]; in my own work with middle school students, those who worked in dual-modality 

programming environments held positive perceptions of text more often than those who moved 

straight from blocks to text [14]. However, no comparative analysis of learning outcomes as 

compared to traditional (text-based) environments has been done. Examining how dual-modality 

instruction connected to student cognitive development, and in what conditions, would help 

advance early computer science instruction. 

RQ2. How does prior programming experience affect students learning in dual-

modality instruction as compared to students learning in traditional (text-based) 

approaches to instruction in CS1 courses? Students in early computer science courses are a 

diverse population with different experiences. Some have prior text experience programming, 

some have worked in blocks, and others have none. In my early research, students with prior 

programming experience more frequently held nuanced perceptions of programming compared 

those who had none [15]. Short of offering completely separate or tailored instruction for each 

student, introductory courses must find effective ways of serving all of these populations. 

Identifying how these environments can support learning and how that support might differ 

based on prior experience can help instructors and researchers improve student experiences. By 

helping instructors and researchers tailor tools and instruction to students with different varied 

programming backgrounds, we can create development-appropriate experiences for students to 

engage with programming and computer science content to build their skills and knowledge. 



 

22 

RQ3. What are student perceptions of dual-modality programming environments 

and instructional approaches, and how do they change over time, in the context of a CS1 

course? There are reports in study interviews that suggest some students perceive text languages 

as hard and intimidating [54]. Blocks-based environments have shown promise in alleviating the 

syntax challenges when learning programming concepts [133], but some students who work in 

blocks continue to struggle with negative perceptions when they move to text [74].  My early 

work showed that some students who move from blocks directly to text find the experience 

frustrating [14]. If dual-modality programming environments alleviate these negative 

perceptions, they may contribute to improved motivation and confidence, which have been 

shown to improve retention within the discipline [80]. Identifying how the student and instructor 

experience change when using dual-modality instruction would provide guidance for instructors 

considering their use in the classroom. 

1.4 Overview of Work  

My dissertation work aims to identify how dual-modality (blocks-to-text) learning 

environments support computer science instruction, how learning outcomes change based on 

prior programming experience, and in what ways they affect the classroom learning experience. 

Research to investigate the efficacy of dual-modality programming environments would be a 

valuable contribution to computer science education because, if it can be shown that they are 

effective in helping students learn computer science, they can be used to bridge from blocks-

based learning environments—which provide helpful scaffolding for novices—to production 

languages which are used in research and industry [78, 81]. My work seeks to provide the tools 

to facilitate use of dual-modality programming environments, an empirical study of how they 

support learning, and evidence of their effectiveness within a classroom setting. To measure 

support of learning in dual-modality programming environments: 
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• I have developed a general-purpose Java language IDE plugin providing blocks-to-text 
transition in real time (and vice versa) based on Pencil Code’s Droplet editor;  

• I have constructed custom dual-mode representation curricula materials with text and 
blocks representations, for use in UF’s CS1 course; and 

• I have conducted a study in which I collected survey responses and assessment data from 
a baseline group taught using traditional, text-based approaches to instruction in UF’s 
CS1 course, and separately an intervention group using dual-modality tools and 
instruction in a different semester of the same CS1 course. 

 

My contributions include a) an analysis of dual-modality tools and curricula and how 

they support the learning of computing concepts; b) a dual-modality blocks-to-text IntelliJ IDEA 

plugin for the Java language; and c) analysis of student perceptions of dual-modality instruction 

and the classroom experience from my perspective as an instructor implementing the use of dual-

modality tools and instruction in an introductory CS college classroom. 

The first part of this dissertation describes the relevant background (Chapter 2). This is 

followed by three descriptions of three related but distinct studies – perceptions of programming 

(Chapter 3), perceptions of dual-modality programming environments (Chapter 4), and learning 

in dual-modality programming environments (Chapter 5). The final section describes my 

findings (Chapter 6), work timeline (Chapter 7), identifies my contributions (Chapter 8), and 

ends with a conclusion (Chapter 9) establishing how my work fits into the body of literature 

within computing education. 
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CHAPTER 2 
BACKGROUND 

Computer science education research is built upon a fusion of general educational theory 

with computer-science-specific practice and research. In this section I outline the background 

work which builds upon traditional educational theory to develop CS-specific approaches and 

tools. 

2.1 Learning to Program 

Learning to program requires concurrent development of multiple skills. In addition to 

general problem solving and computational thinking competency, students must also learn 

theory. At the same time, students must evolve through the stages of expertise development – 

from seeing programs as a black box to advanced chunking and abstraction [71]. These abilities 

are distinct and each carries its own cognitive load—that is, mental effort in working memory 

required when solving problems [118, 95]. Programming has also historically been taught using 

text-based languages, meaning those challenges specifically associated with learning syntax 

often surface in early programming instruction. Additionally, in order to improve the efficacy of 

programming instruction, it is helpful to have measurement instruments to identify if and to what 

degree learning has taken place [117]. This section identifies the general challenges of learning 

to program, as well as those specific to text-based instruction, and describes the development of 

concept inventory instruments that can be used to assess learning in programming. 

2.1.1 Language Challenges 

Text languages, which are commonplace in industry and college education, present 

challenges to the novice programmer with respect to syntax and semantics. This section 

addresses these challenges from the perspective of the development stages that learners go 

through as they progress from novice to expert. 
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2.1.1.1 Syntax 

Language syntax has been recognized as a barrier students face when learning computer 

science [72]. McIver and Conway developed the GRAIL language in an attempt to minimize 

syntax errors; the main goals were to maximize readability and minimize unproductive errors 

[86]. In a follow-up, McIver studied students using GRAIL and LOGO to compare error rates 

[85]. Participants in this study were provided with development environments that were 

identical, with only the languages differing; the participants were given a series of eight 

exercises to complete. When participants attempted to run their programs, a snapshot of the 

program text was captured and stored, and program errors were then analyzed and split into 

syntax errors (such as use of an incorrect keyword) and logic errors (such as an algorithm with 

incorrect steps). McIver found that students using GRAIL—designed to minimize syntax 

problems—had not only a lower number of syntax errors, but also a lower number of logic 

errors, suggesting that students who face fewer syntax challenges can reduce their logical errors 

as a result. 

Later, Ko et al. identified syntax as a contributing factor in four of six learning barriers 

they examined within programming systems [61]. They found that identifying the right interface 

for a task—such as when a user knows what task to accomplish but cannot determine (select) the 

correct construct—created selection barriers. For example, a user in a simulation environment 

may know that a task requires moving a character to a particular location on the screen but may 

have difficulty identifying which syntax will accomplish that goal. As construct names / text are 

not necessarily intuitively tied to what they do, syntax challenges can act as use barriers – even 

if a user knows that an “if” statement provides conditional execution, they may not be able to 

properly construct the conditional expression.  Difficulty in knowing which constructs can 

connect to and work with one another establish coordination barriers, such as trying to break out 
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of a looping expression using a “switch” statement (which cannot be done in many languages); 

and misassembly of constructs can result in difficulty understanding why a program does or does 

not do something (understanding barriers) – a user who misunderstands operator precedence 

may miscalculate a value by arranging the operators incorrectly. 

2.1.1.2 Semantics 

In addition to unique syntax, each programming language construct has specific 

semantics – the meaning of the construct. Deciphering this meaning requires an understanding 

not only of the syntax of the language, but also the overall context of the construct within a block 

of code. Programmers at concrete and formal operational stages of reasoning development, when 

reading code, perceive text as a composition of constructs using an internal mental model of 

those constructs – they chunk out blocks of code and summarize their meaning [71]. Students in 

the preoperational stage, by contrast, see lines of code as individual elements, rather than as 

abstract chunks; this increases their cognitive load and limits their ability to reason abstractly 

[71]. Ko’s work also noted that semantics were a key aspect of two of the six learning barriers, 

specifically use barriers (such as using the wrong parameters) and coordination barriers (e.g., 

misunderstanding how constructs interact with one another) mentioned previously [61]. 

Semantics also play a critical role in debugging, as practitioners must read, trace, and develop 

abstract models of sections of code [2]. 

Taken together, syntax and semantic challenges represent a potentially significant hurdle 

for students to overcome. Further exploration of the relationship between syntax / constructs and 

perceptions of difficulty and intimidation could help researchers and teachers address those 

negative perceptions that may impact student interest and learning. 
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2.1.1.3 Perceptions 

Text-based languages, especially production languages, have been noted as presenting 

perception-based challenges; the literature suggests that text-based languages can be 

intimidating, especially for women [12]. Begel and Klopfer, in developing StarLogo TNG, 

conducted focus groups to identify the strengths and weaknesses of the previous and new 

platforms; they found that women and girls consistently felt intimidated by (text-based) 

programming languages, who viewed them as male-oriented [12]. This may impact future 

motivations to study computer science [59]. Results also suggest that text-based languages suffer 

from association with “uninteresting” tasks [134]. Association with uninteresting / boring / 

“uncool” work tasks has also been implicated in limiting motivation among students in minority 

populations [37]. Visual languages attempt to address many of these issues by making the 

environments more inviting and approachable and by incorporating games, simulation, and 

multimedia [107, 54, 104]. 

2.1.2 Developing Expertise 

Early attempts to understand development of programming skills followed the 

constructivist / Piagetian tradition [96]. In this framework, students learn by constructing their 

own knowledge via assimilation (bringing new information into existing frameworks) and 

accommodation (reframing mental representation to match new experiences). The Piagetian 

framework, however, is closely tied to mental development and age-based maturity [20]. In 

Piaget’s framework, the sensorimotor stage encompasses infancy (through age of 2) and is 

characterized by a lack of internalized thinking, while the preoperational stage is described as 

intuitive (rather than logical) and lasts until the age of 7. In the concrete operational stage 

(through age 11), children apply logic, but only to their concrete inputs; finally, in the formal 

operational stage (from age 11), children can reason fully in the abstract. Lister instead proposed 
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applying the Neo-Piagetian framework – which decouples age and maturity from development of 

skills – to account for cognitive development in the domain of programming [71]. Lister 

proposed four stages of reasoning development in programming within this framework: 

sensorimotor – knowing programs produce a result, but not why, preoperational – understanding 

lines of code, concrete operational – reasoning about familiar, real-world situations, and formal 

operational – reasoning about unfamiliar, hypothetical situations. This framework is supported 

by empirical evidence from Corney et al [32] and think aloud studies by Teague et al [120]. In 

this section I briefly summarize each stage as it relates to programming skill development. 

It is established in psychology literature that humans have limited capacity in their short-

term or working memory, as argued by Miller in 1956 [90]. In order to cope with these 

limitations, experts employ chunking as a mechanism to recall information and ideas [45]. 

Information is broken into chunks which are stored in long-term memory; these chunks can be 

recalled as a single concept in working memory, reducing the number of unique ideas that must 

be in the working memory at a particular moment in time, and thereby reducing cognitive load 

[45]. As such, the development of chunking and abstraction methods is tied intimately with the 

evolution of advanced stages in the Neo-Piagetian framework of development. 

2.1.2.1 Sensorimotor 

In the sensorimotor stage, students see programming as a “black box” – they know the 

code produces a result but do not see the executing program as a sequence of instructions on a 

machine. They lack conceptual understanding of constructs and programs, even at a definitional 

level. Lister (and later Corney et al) identified students in this stage as those who could not read 

code and trace its execution with at least 50% accuracy [71, 32]. Students in this stage, lacking 

an understanding of the constructs themselves, are unable to engage in abstraction. 
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2.1.2.2 Preoperational 

Students in the preoperational stage understand the function of individual lines of code. 

They understand the deterministic nature of computer programs functionally and conceptually – 

that is, they understand the definition of constructs – but often cannot summarize sections of 

code to determine overall meaning or function. According to Lister’s framework [71], these 

students can accurately read code and trace its execution with at least 50% accuracy but struggle 

to relate the function of lines of codes with respect to one another, to explain what a section of 

code does, or to develop diagrams describing the function of code. They may be able to write 

simple programs but cannot meaningfully think abstractly about programs. 

2.1.2.3 Concrete-operational 

Concrete operational reasoning requires the ability to engage in abstraction and to 

understand the meaning of sections of code as they relate to concrete and familiar situations. 

Students in this stage of development can read, trace, and write code. They can also engage in 

abstract thinking about programs, explain blocks of code, and draw diagrams describing code, 

but are restricted to those situations with which they have experience – they typically cannot 

abstract away solutions and apply them to distantly related problems – i.e., apply them to a new 

task. Notably, the McCracken working group identified abstraction as a key challenge students 

continue to struggle with at the end of most introductory computer science (CS1) courses [84]. 

Being able to break code into sections, and then evaluate the function of that code as a whole – 

rather than merely tracing code execution – is a fundamental distinction between preoperational 

and concrete operational development stages. This chunking mechanism facilitates abstraction of 

code into ideas that do not require line-by-line tracing [71]. Lister also argued that students in 

this stage understand three key properties – reversing, conservation, and transitive inference 

[71]: 



 

30 

• reversing – computational operations can be “undone”; e.g. after shifting items in a list 
to the left, the operation can be reserved by shifting the same items in the list to the right. 

• conservation – equivalence of code across transformations that maintain the 
specification (targeted task); e.g., equivalence of two programs that find a minimum 
value in a set of values. 

• transitive inference – relationships in data (often math); e.g., if a program organizes data 
to guarantee that x > y, and separately that y > z, then it also organizes the data such that 
x > z. 

 

2.1.2.4 Formal operational 

As the most developed stage, formal operational reasoning is, in the words of Corney et 

al, “what competent programmers do, and what we’d like our students to do” [32]. These 

students can read, trace, and write code; they understand the constructs conceptually; and they 

can reason abstractly about programs. Lister described these students, based on the work of the 

McCracken working group, as capable of engaging in abstraction and deconstruction in order to 

develop solutions and iterate on them [71, 84]. In addition to being able to reason about familiar 

situations, persons at this stage of development can reason abstractly about unfamiliar ones. 

2.1.2.5 Summary 

The Neo-Piagetian framework suggests students progress through four stages of 

development as they move from novice to expert in a field such as computer science: 

sensorimotor (seeing a program as a “black box”), preoperational (understanding lines of code 

and being able to trace execution), concrete operational (able to apply abstractions of solutions 

in similar situations), and formal operational (able to apply abstractions of solutions to 

unfamiliar situations). Research has suggested that while most students progress beyond 

sensorimotor levels in CS1 courses [73], the majority are at preoperational or concrete 

operational stages (with most showing a limited degree of concrete operational thinking) [32]. 
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Prior research provides clues as to intervention strategies that may be applicable when 

helping students progress in the development stages. Code tracing has been identified as a key 

skill differentiating sensorimotor and preoperational stages of development, while abstraction is 

noted as critical to concrete and formal operational stages. Evidence suggests that techniques 

such as lightweight sketching – stepping through instructions while using a written memory 

table to track variable values (rather than trying to keep them memorized) – helps students learn 

to read code and trace through programs [138]. In his consideration of abstraction in computing 

instruction, Kramer suggested abstractions could be effectively taught by building on the work of 

Huitt and Hummel [55] - namely, by having students explore hypothetical questions, 

encouraging them to explain their problem-solving process, and by approaching instruction from 

a conceptual (rather than fact based) perspective [68]. 

2.2 Programming Assessment 

Several approaches can be used to evaluate student learning in technical fields, including 

examination of artifacts created by students and formal assessments [52, 70]. Standardized 

assessment instruments, if developed in a way that makes strong arguments for their validity and 

reliability, can provide compelling evidence of the effectiveness of approaches to instruction 

[122]. It is also important to be able to identify the validity of an instrument within a specific 

context by analyzing questions on an assessment individually and collectively [123]. This section 

identifies key aspects of learning assessment and instruments used for this purpose. 

2.2.1 Concept Inventories 

A concept inventory is one type of instrument that can be used to measure competency. 

Tew and Guzdial proposed a language independent assessment of CS1 concepts [123]. Tew and 

Guzdial proposed a multi-step process to define the test’s content and verify its validity and 

reliability. Tew later developed the Foundational CS1 (FCS1) Assessment to evaluate basic 
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computer science competency in a language independent manner [122]. The FCS1 is made up of 

multiple-choice questions that are categorized as definitional, tracing, and code-completion 

questions. Content of the exam was defined by an examination of topics from textbooks used in 

CS1 courses and ACM/IEEE guidelines. The topics covered by the test include variables, 

operators, program control, arrays, and recursion. Tew conducted three separate studies to verify 

programming language independence [122]. 

Building on the results of the work by Tew and later the 2013 ITiCSE working group 

under Utting, Parker and Guzdial developed an isomorphic version of the FCS1 in order to 

expand on the instruments available to the research community [98]. Isomorphic variants of 

questions are developed by changing variables and answer choices but keeping the topical area 

and style consistent with the original [98]. This new instrument, the Second CS1 Assessment 

(SCS1), was developed to mitigate the risk of saturation of any one assessment (and any impact 

on its validity). In a study with 183 participants, Parker and Guzdial found a strong correlation 

between participant scores on the FCS1 and the SCS1, which were given to participants one 

week apart from one another, and argued on this basis that the SCS1 is valid. 

It is notable that both the FCS1 and SCS1 questions are, on average, considered very 

difficult, and not all questions provide the same level of discrimination (Table 2-1). Most 

questions on the assessment (22 of 27) were answered correctly by less than 50% of the 

participants, and none of the questions were considered easy (85%-100% answering correctly) 

[98]. There were also limitations with respect to discrimination quality of questions, with 7 of 27 

questions considered to be poor discriminators (discrimination factor of less than 0.1), 15 of 27 

considered fair discriminators (factor of 0.1-0.3), and only 5 of 27 considered good 

discriminators (factor greater than 0.3). Luckily, these limitations can be addressed, depending 
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on the circumstance. While the SCS1’s difficulty poses challenges when measuring lower levels 

of performance, this difficulty also means that the assessment has a higher ceiling – i.e., there is 

more “room” for high performance to be measured. In addition, the majority of the questions (20 

of 27) provide fair or better discrimination. 

Table 2-1. Questions on SCS1 by Discrimination Factor & Difficulty (Parker & Guzdial, 2016) 
Discrimination Factor Hard ( < 50%) Medium (50% - 80% Easy (85%+) Total 
Poor (<0.1) 7 0 0 Data 
Fair (0.1-0.3) 14 1 0 Data 
Good (0.3+) 1 4 0 Data 
Total 22 5 0 Data 

 

2.2.2 Item Response Theory 

Item response theory (IRT) is a common way that an argument for the reliability of an 

instrument can be made. It is rooted in the probability that a person of a certain ability level will 

score correctly on a particular item on an instrument (such as a question on a test) based on a 

response curve [5]. IRT is used around the world for large-scale assessments, including 

extensively in research and use by Educational Testing Service (ETS), which develops and 

administers the SAT, GRE, and AP examinations [25]. Two commonly used IRT models are 

one-parameter (1PL/Rasch) and two-parameter (2PL) logistical models. IRT can be applied to a 

set of data via item analysis.  An item analysis can be performed on questions to identify the 

difficulty parameter of a question and, if a multi-parameter logistic model is used, a 

discrimination parameter (which measures how well an item discriminates between those of 

higher and lower ability – also called a slope parameter) [101]. 

Sudol and Studer presented one approach to item analysis of a set of response samples 

using the R language. Their work allows researchers to easily build graph visualizations of 

difficulty and discrimination on a per-item basis [115]. Sudol and Studer also described several 
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item curves; these graphs plot ability vs probability, where mean student ability is zero. First 

among the described curves is the Standard Item Characteristic Curve (Figure 2-1). They 

suggested that items (questions) that best discriminate among average participants mirror this 

graph. These questions have a steep and positive slope at zero in ability, indicating that 

performance increases with ability. Most performance difference is within one standard deviation 

from the mean in such questions. They also discussed a Guttman Item curve (Figure 2-2a), which 

is seen when measuring knowledge that is likely recall-based or when there is poor item fit, and 

an Easy Item curve (Figure 2-2b), where most participants – even those with low ability – 

perform well. Sudol and Studer also described problematic curves. These include Linear Items 

(Figure 2-2c), which may indicate mixing of multiple concepts into a question – a violation of 

the assumptions of the model – and possibly other problems, and Descending Curves (Figure 2-

2d), which indicate an inverse relationship between performance and ability. Using Item 

Analysis, instruments such as concept inventories can be evaluated for reliability and validity 

with different populations. 

 
 

Figure 2-1. Standard Item Curve. (Sudol, 2010). 
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Figure 2-2. Guttman (a), Easy (b), Linear (c), & Descending (d) Curves (Sudol, 2010). 

2.3 Visual Languages & Environments 

In addition to providing a pedagogical framework and methods of measurement, 

instructional tools and environments can help facilitate learning in computer science and other 

fields. To address the challenges of text-based languages for novices and provide scaffolding, 

visual and (especially blocks-based) languages have been in development that have shown 

promise in helping more students learn computer science concepts[31, 34]. The earliest of these 

are graph systems, which evolved from flow charts and diagrams, and were intended to be 

accessible to non-programmers [56, 83]. Later systems integrated simulations and were rooted 

in the constructionist philosophy; they intentionally provided an area for play and engagement 

with learning as an explicit target [96]. Modern blocks-based languages incorporated the ideas 

of these earlier systems, but also added additional scaffolding to facilitate educational goals

(d) 

(c) 
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[54]. These blocks-based environments usually use colorful palettes to create an approachable 

environment for novices of computer science and denote semantic roles (such as control or 

statement blocks). They also often use visual and/or audible cues (such as puzzle-piece 

connectors and clicks) to convey construct connections and semantics [54]. 

2.3.1 Development of Visual Programming Environments 

Visual environments and representations of algorithms were inspired by the desire to 

make programming more accessible and easier to understand [54, 56, 83]. Modern visual 

environments aim to decouple syntax from algorithmic thinking (through the use of visual 

constructs that snap together), reduce intimidating perception (through friendly color schemes 

and recognizable shapes), and introduce interesting functionality to boost motivation (via 

multimedia integration) [77, 54, 28]. This section evaluates the historical motivations of these 

visual languages—many related to the challenges of text-based instruction—and examines their 

design, application, and evaluation. It also considers their evolution over time, evaluations of 

their efficacy, and open questions in the literature regarding them. 

2.3.1.1 Early visual programming systems 

Work in visual programming environments evolved in part from visual flow charts and 

diagrams, such as Prograph and Fabrik [83, 56]. These early system designs were in part meant 

to create executable variants of data and control flow diagrams (a la flow charts). Graph-based 

symbolic systems laid the groundwork for object- and agent-based visual simulation frameworks 

as the object-oriented paradigm developed and influenced computer science research and 

languages [109, 11]. These simulation environments were designed around object (agent) 

manipulation and constructionist philosophy, which is based on learning through the building of 

mental models over time through exploration [107, 112, 97]. KidSim and AgentSheets (Figure 2-

3) integrated spatial and temporal affordances through which agents could be created and
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modified via grid-structured containers [108, 33]. These containers were the early precursors to 

blocks-based programming systems [43]. 

 
 

Figure 2-3. Early version of AgentSheets (A. Repenning) [107]. 

 
2.3.1.2 Blocks-based interface development 

At MIT, systems inspired by robotics were being developed with a focus on accessibility 

to wider audiences. These eventually gave birth to blocks-based programming environments, 

beginning with LogoBlocks. LogoBlocks (Figure 2-4) is a puzzle-style, blocks-based 

programming environment, built on the ideas of prior diagram-based and agent-based systems 

[54]. LogoBlocks was based on earlier work on LEGOsheets, which itself was based on 

AgentSheets [43]. LogoBlocks also was created to serve as a development environment for the 

LEGO Programmable Brick [11]. LogoBlocks programs are written to be perfectly translatable 

into Brick Logo, a variant of Logo used for the LEGO Programmable Brick. It was paired with a 

compiler that first converted LogoBlocks programs into Brick Logo. 
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The design work in LogoBlocks focused on visual affordances and cues to facilitate 

understanding. Early iterations of LogoBlocks used a grid-based model a la Agentsheets [107]. 

Later iterations, seeking to depart from the rigid nature of the grid-based approach, removed the 

grid itself. To maintain spatial relationships between elements, visually interlocking connectors 

were added. Connectors varied by block type. For example, action blocks in a sequence were 

listed vertically; each action block contained an ACTION_TOP and ACTION_BOTTOM 

connection point. The ACTION_TOP connector of one block could connect to the 

ACTION_BOTTOM of another block. Blocks with matching (complementary) connection 

points were also built to snap together (both visually and audibly) when in close proximity; this 

allowed for more free form use of the blocks. To make blocks easily identifiable, each block type 

had a unique color, shape, and label [54]. The latching mechanism was devised to simplify 

connection of constructs and relieve students of the need to precisely place blocks on the canvas. 

 
 

Figure 2-4. Blocks-Based Interfaces: LogoBlocks [54]. 
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2.3.2 Contemporary Blocks-Based Environments 

While work on LogoBlocks progressed, simulation-based, object-oriented 

development—and work to make it more accessible to a wider audience—continued with the 

Alice environment (Figure 2-5a). Alice was at first developed as a scripting environment for 3D 

computer graphics for storytelling [104]. Alice focused especially on usability concerns 

(principally, the law of least astonishment) for the non-programmer audience; its principal goal 

was to reduce the dependency on mathematical underpinnings when working in 3D graphics 

[27]. To this end, Alice abstracted hardware, graphical APIs, and linear algebra into a simplified, 

“plain-language” programming interface [26]. Later work on Alice focused on its potential as a 

platform for learning to program and for practicing algorithmic thinking by building and 

scripting 3D worlds, as it allowed for exploration with real-time visualizations [34]. While Alice 

started out as a text-scripted environment in Python, later versions converted to a blocks-based 

approach to sequence commands in an object-oriented style inspired by Java [29], and as of 

Alice 3, visually constructed code is perfectly translatable in Java to make transition to Java from 

Alice easier [23]. 

Scratch [77] (Figure 2-5b), started in MIT’s Media Lab, built on the puzzle-piece-style 

block constructs of LogoBlocks [54] and real-time visualizations of Alice [27]. While the 

environment of Scratch was 2D (compared to Alice’s 3D environment), it incorporated many of 

the usability features from both Alice and LogoBlocks to create a platform that was friendly and 

accessible to children [77]. Scratch’s environment featured the same interlocking and snap-

together mechanisms developed and refined in the LogoBlocks project [54] and added the 

multimedia elements from Alice [104]. Scratch’s web-centric design encouraged students to 

share their creations with other users, helping users to develop a vibrant community based on 
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remixing the work of others [92]; this practice has been shown to increase interest in continuing 

to program [37] and helped disadvantaged students connect as a community in local computer 

clubs [76]. Scratch was also explicitly designed to include parallel execution affordances as a 

main feature; the event-driven structure of the system allows multiple instruction threads to 

execute concurrently, usually engaged through input or messaging between agents in the 

environment [110]. 

  
 
Figure 2-5. a) Alice environment [104] (left) and b) Scratch environment [77] (right). 

 
2.3.3 Efficacy of Blocks-Based Environments 

Effectiveness of these environments can be measured according to different criteria and 

by using a few different metrics. For example, the goal may be to see if the environment can be 

an effective instructional tool; to compare the performance of students using a new environment 

or language and one already in use; to prepare students for more advanced programming and 

computer science coursework; or it may be some combination of these. The scaffolding provided 
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by these environments aims to reduce or eliminate syntax errors (by eliminating syntax through 

the use of blocks), facilitate understanding of semantics and construct relationships (via colors 

and puzzle-piece-style snapping), and improve motivation and interest (by providing multimedia 

environments to work within). 

2.3.3.1 Effectiveness as learning environment 

In general, these tools have been used successfully to help students to learn. Studies have 

provided evidence that the scaffolding provided by these environments eliminates problems with 

syntax errors, allowing students to employ computational thinking, while also nurturing an 

appreciation of trial-and-error approaches necessary for programming and debugging [75, 132, 

94]. Some studies, particularly those with Alice, also show students developed a strong sense of 

objects and their contexts within programs [31, 131]. Cooper et al. ran an experiment with a 

small number of  college students (N=21) identified as weak CS majors (those who had no prior 

programming experience and were not prepared for calculus) to test the effectiveness of Alice as 

an environment to help students learn computer science [31]. Eleven (11) students took an Alice-

based preparation course, either before or alongside CS1; ten (10) students did not and served as 

the control group. The students who took the Alice-based course in addition to CS1 performed 

better in the CS1 course, suggesting a prior course in Alice can help students succeed in CS1 

courses. However, as the authors noted, these results may be biased by self-selection of 

motivated students into the Alice course. Meerbaum-Salant et al. evaluated instruction using 

Scratch to teach 9th grade boys and girls (N=46) [89]; they found that students using Scratch 

improved their knowledge of computer science and programming through its use. They also 

found that students internalized core CS concepts (including initialization, loops, variables, and 

concurrency) and improvement in cognitive performance levels (including understanding, 

applying, and creating). However, the impact was not uniform – some concepts were more 
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readily internalized than others. For example, while 75% of participants correctly answered 

questions regarding conditional loops, only 52% answered correctly regarding bounded loops. 

With respect to effectiveness compared to other environments, results diverge somewhat 

depending on the circumstances and are mixed. Wang et al. conducted a quasi-experiment at the 

high school level with two groups of students (N=166), one learning C++ and the other learning 

via Alice [131]; they found that students in the Alice coursework performed slightly better 

overall than those in the C++ group. However, in a study comparing students (N=154) receiving 

instruction via pseudocode and those using Alice, Garlick and Çelikel found that students using 

Alice performed more poorly than those learning via pseudocode [42]. It is possible that method 

of instruction or differences between the C++ and pseudocode approach played a role in the 

difference in results; more research may help elicit in which situations Alice and similar 

environments may be helpful. Weintrop studied the difference between blocks-based and text-

based environments with two groups of students in high schools. One group started in a blocks-

based environment, while the other started with text (JavaScript or CoffeeScript); at the 

midpoint, both groups changed to the Java language in text. He found that those students who 

worked in the blocks-based environment outperformed the text-based group on an assessment of 

algorithm construct concepts used in programming at the midpoint (before the switch to Java). 

However, their scores at the end of the course—after the completion of the Java portion—were 

comparable; in other words, the students were not worse off, performance-wise, for having used 

the blocks-based environments. 

2.3.3.2 Moving from blocks to text 

While studies have shown that blocks-based environments can be effective learning tools, 

some data suggest that students struggle to switch from blocks to text later. In Weintrop’s study 

[134], participants starting in blocks reported statistically significant increased levels of 
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confidence from the start to just before changing to Java (the midpoint of the study), but a 

statistically significant decrease in confidence in the second phase (after switching from blocks 

to text). The text-condition students, however, did not show statistically different changes in 

confidence over the course of the study. One possible explanation may be that, while blocks-

based environments boost morale and motivation—and possibly early learning—over time this 

benefit decreases as students become more accustomed to computational thinking and thus get 

less benefit from the reduced cognitive load of the blocks-based environments. It is also possible 

that the motivational challenges of text-based languages impact performance in similar ways 

regardless of when they are introduced (whether before or after learning fundamentals), possibly 

related to perceptions of difficulty and authenticity, resulting in the same overall ability level in 

participants upon completion of the entire course. Data collected during my own study with 

middle school students (Section 4.3) suggests that students who start in blocks perceive text 

more negatively after switching from blocks to text, unlike their counterparts who have worked 

exclusively in text. The scaffolding provided by blocks-based languages is intended to address 

issues related to perception and the challenges of syntax; however, more research is needed to 

determine how this scaffolding impacts student learning and motivation in the long term. It is 

also notable that, while Weintrop’s results showed improvement in student performance on 

ability tests while in the blocks-based environments, once students moved to text, the learning 

outcome advantage dissipated. While not the primary topic of this dissertation, additional study 

of how switching students from blocks to text environments compares with teaching them 

exclusively in text environments could help identify the impact these environments have on 

learning over longer periods. This dissertation will help provide a foundation for later research 

comparing purely text-based and blocks-to-text approaches to instruction. 
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2.3.3.3 Special considerations - environments are not equal 

It is important to note that the blocks-based environments discussed are targeted to 

different age groups. For example, while Scratch targets elementary through early high school 

students, Alice was originally created to serve students at the undergraduate level, though today 

it is used in K-12 classrooms [26, 75]. Design differences change the implementation of 

scaffolding and structure of the language representation. For example, Scratch makes use of 

brightly colored, snap-together puzzle piece blocks meant to appeal to younger children, while 

Alice utilizes simple rectangular blocks in more subdued colors [77]. Likewise, Alice’s variants 

employ an explicitly object-oriented data model, while Scratch’s interface is limited to a handful 

of base object types (most notably sprites and backdrops) [77, 132].  The differences in 

scaffolding implementation could also impact the effectiveness of the environments and the 

evaluation of them. For example, Scratch uses puzzle piece affordances that help novices 

associate constructs that can be used together with one another visually and audibly; Alice’s 

drag-and-drop object creation mechanism reinforces the concepts of classes as blueprints and 

objects as entities. Further research of these differences, and how they impact students of 

different ages, could help instructors and researchers determine which features are more effective 

with different age groups. 

Modern blocks-based environments, like Alice and Scratch, also provide unique 

affordances for some aspects of programming. For example, parallel, multithreaded 

programming is a topic that is becoming more crucial with the proliferation of multicore 

processors. Both Alice and Scratch provide visual, message- and event-based frameworks that 

simplify multithreaded execution in a form accessible even to children. If research showed that 

these approaches help students learn parallel programming more easily or quickly, teachers could 

more effectively prepare students in less time. Previous studies comparing text and blocks have 
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differed; however, those studies used different text-based languages. Research comparing 

different text-based languages to blocks-based environments, in the same situation, could help 

determine if language played a role. Scaffolding to smooth the transition from blocks to text may 

also reduce the friction of changing to text-based languages. Further research could help 

determine if this is the case. Knowing this could help the teaching community identify the best 

approach for introductory programming. 

Table 2-2. Summary of Visual Environment Affordances 
Environment Type Predecessors Snap Color Shape Icon 
Prograph Graph [83] - No No Yes Yes 
Fabrik Graph [56] - No No Yes Yes 
AgentSheets Grid [107] - No Yes No Yes 
KidSim Grid [112] - No No No Yes 
LEGOSheets Grid [43] AgentSheets, Logo [43] No Yes No Yes 
LogoBlocks Blocks [11] BrickLogo [11] Yes Yes Yes No 
Alice 2.0, 3.0 Blocks [132, 35] Alice 1.0 No Yes No No 
Storytelling Alice Blocks [59] Alice 2.0 No Yes No No 
Scratch 1.0, 2.0 Blocks [77] LogoBlocks [77] Yes Yes Yes Part 
Scratch Jr Blocks [105] Scratch 2.0 [105] Yes Yes Yes Yes 

 

2.4 Multi-Modal Environments 

Another approach to introducing students to programming is to use multimodal 

development environments—that is, environments that use different types of representations 

(such as blocks and text) to represent code and/or relationships. For purposes of this dissertation, 

I will refer to hybrid modality environments as those where different representations are used 

for different types of information and/or different relationships, and dual-modality 

programming environments as those which provide multiple representations of the same 

information and/or relationships. 

2.4.1 Hybrid Modality Environments 

The earliest multimodal environments used different representations distinctly to 

represent different types of information (i.e., hybrid modality). BlueJ (Figure 2-6a), an evolution 
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of the Blue Environment [62], mixes graphical representations of class and object relationships 

in the Java language with text representations of their definitions  [63]. BlueJ is centered on an 

objects-first design; early on it distinguishes between classes, which are designed as templates, 

and objects, which must be explicitly, and visually, created from those classes [67]. The classes 

and their relationships—including inheritance—are displayed using diagrams, similar to earlier 

systems like Prograph and Fabrik [83, 56]. Objects, meanwhile, are displayed in a separate object 

bench to distinguish them from the classes. Users can edit the code for a class by “opening” the 

class, which displays the class’s text in an editor. Users can also run methods for testing purposes 

and inspect object values through a context menu. 

Preliminary studies using BlueJ have suggested it holds promise for students in computer 

science courses. Hagan and Markham surveyed 120 college students who used BlueJ asking 

them to answer the question “How much does BlueJ help you learn Java programming?” on a 

scale of 1 to 7 (1 being “a great deal” and 7 being “very little”); 62% of respondents answered 

“1”, “2”, or “3” (more helpful), 16% answered “4” (neutral), and only 22% answered “5,”,6”, or 

“7” (less helpful) [50]. In comparing students who used BlueJ for an introductory course and 

those who did not, Borstler et al. found that students using BlueJ had lower dropout rates and 

higher pass/fail ratios [19]. Van Haaster and Hagan surveyed students in the two earliest 

computer science classes where BlueJ was optional; all students elected to use BlueJ, and their 

failure rates were reduced compared to the previous two years of classes (though they noted that 

the language was also different, previously having been C++) [48]. 

Greenfoot (Figure 2-6b) was later developed by many from the team that originally 

created BlueJ; it takes its inspiration from BlueJ and Karel the Robot, a robot simulator for 

learning programming [63, 51, 103]. Similar to BlueJ, Greenfoot is based on an objects-early 
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model. It is meant to address younger populations—including high school students—and to 

combine the simplicity of microworlds (in the vein of Karel) with the flexibility and object 

modeling of BlueJ. Greenfoot uses a grid-based world similar to the one used by AgentSheets 

and KidSim [107, 112]. It also carries over many features directly from BlueJ, including 

class/object distinctions, direct method invocation, and object inspection [63]. The combination 

of the world model and object/class visualization model allows for complex development [64]. 

Greenfoot was designed specifically to, among other things, motivate students when 

studying computing. Research has suggested working in Greenfoot may help student motivation, 

though it is not clear if it has helped students learn more effectively [129, 3]. Vilner et al. 

surveyed 325 students who worked in Greenfoot. Most of these students said they enjoyed using 

Greenfoot, and about half said it helped them understand inheritance; however, these was no 

statistical different in grades attributable to using Greenfoot [129]. Al-Bow et al. worked with 

students in a high school summer camp (9th and 10 grades). These students showed 

improvements in attitude, including enthusiasm and pride, and they were able to complete the 

tasks in the camp [3]. 

Recent versions of Greenfoot have implemented frame-based editing [66]. The frame-

based editing model seeks to prevent syntax errors, as blocks do, while maintaining the 

expressive nature of text valued by experts [65]. In frame-based editors, scoping is defined by 

frames – which represent the boundaries of programming constructs – and which contain other 

constructs. As in blocks-based environments, the constructs are delineated visually; however, in 

frame-based editors, new frames are created using key combinations – such as pressing the “V” 

key to create a new variable – rather than dragging and dropping of constructs from a toolbar 

[66]. Generally, frame-based editors are intended to work with a keyboard workflow – and 
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therefore maintain similarity with text-based source editing – with the stated goal of being useful 

to learners for a longer period than blocks-based programming environments [65].  

While some initial work has indicated that students have positive perceptions of frame-

based editing environments [106], there is limited research in how the effectiveness of 

multimodal environments compares to other environments, especially after moving to pure-text 

environments [36]. further work would be needed to determine how these environments compare 

to text- and blocks-based frameworks. 

  
 

Figure 2-6. Hybrid modality environments: a) BlueJ [63] and b) Greenfoot [51]. 

 
2.4.2 Dual-Modality Programming Environments 

Dual-modality programming environments provide a means to translate between 

representations – usually from blocks into text or vice versa – to help students understand the 

relationships between visual representations of constructs and their text-based counterparts 

[134]. Some of these allow only translation from blocks to text, while others also allow text to be 
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translated into blocks (i.e., they have bidirectional translation) [7, 35]. By providing a practical 

and usable environment that allows quick transition between blocks and text of the same 

program semantics, these environments may be able to overcome the actual and/or perceived 

difficulty of text-based languages. In addition to more clearly connecting constructs to their 

syntax, these environments may provide scaffolding for students to develop skills in chunking 

and abstraction [71] by “blocking” sections of text – i.e., creating blocks from the text (and 

thereby associating these text constructs with a visual area). By combining the affordances of 

blocks-based environments that show how constructs can be used together and how they connect, 

and by showing explicitly the equivalence to text variants of the same constructs, they hold 

promise in addressing coordination and understanding barriers [61]. If language difficulties and 

learning barriers associated with text representations could be alleviated, students may be able to 

develop competency in computing more effectively. In this section, I explore current frameworks 

offering translation between blocks and text and explore open questions in the literature 

regarding them. 

2.4.2.1 Unidirectional translation (blocks to text) 

Many environments offer one-way translation of blocks into text code. While Alice’s 

early versions were text-based, visual programming (and eventually blocks-based programming) 

was used in later versions. Alice 2 introduced a “code export” feature that allowed users to 

export a printable HTML file [79]. Later, Alice 3 displayed a grammatically correct Java 

translation of blocks in a separate window which users could turn on and off via the menu.  In 

addition, Alice 3 projects can be converted into a complete Java project. Dann et al. studied the 

use of Alice 3’s translation features and how they impact transfer when moving to Java [83]; 

they found that student performance on final exams improved dramatically—from 60.8% in a 

prior semester using Alice 2 to 85.0% and 81.5% in semesters using Alice 3 and Java translation 
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features. This lends credence to the notion that connecting blocks and text representations 

explicitly – such as via a multi-modal environment – provides strong support for transfer of 

student knowledge from blocks to text. It should be noted that final exams were not identified as 

valid CS assessment instruments and that only one of the instructors taught both the old and new 

versions of the course; either or both of these concerns could influence the data gathered in the 

study. Some exam questions may not be measuring core computing concepts, but other related 

factors – such as language- or platform-specific applications. In the same vein, different teachers 

are likely to present materials in very different ways and using different approaches, potentially 

impacting student learning and retention. 

Another unidirectional blocks-to-text tool is Google’s Blockly library. Blockly allows 

developers to build blocks-based programming editors. It provides a blocks-based development 

environment that can be translated into multiple programming languages. Users of Blockly-based 

applications can drag and drop blocks representing constructs to build algorithms, and these 

blocks representations can be translated into syntactically correct code in text-based languages 

[139]. Several languages are supported by default, including JavaScript and Python, and 

additional language implementations can be added. Blockly was designed and updated based on 

feedback and observations from user testing [40]. An explicit goal of Blockly’s blocks-to-text 

design is to provide an “exit strategy” and also support the authenticity of the blocks 

representation [40]. The design aims to facilitate movement to pure-text representations by 

providing direct conversion of blocks into text in production languages. Blockly is currently in 

use in several environments, including App Inventor and Code.org [139]. Wagner et al. studied 

the use of App Inventor specifically in a K-12 summer camp [130]. They found that showing 
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students the blocks representation of Java using Blockly, then the text representation of the same 

Java constructs, helped students understand how to build an application. 

2.4.2.2 Bidirectional translation 

The Pencil Code project introduced a dual-modality development editor—the Droplet 

Editor—that allows users to switch between blocks-based and text-based representations of the 

same program in real-time [7, 9]. A crucial difference is that, unlike one-way translation features 

(like those in Alice and Blockly), Droplet is bidirectional—it can convert from blocks to text, but 

also from text to blocks (Figure 2-7). This allows users to transition between blocks and text at 

their own pace, as they can return to the blocks mode (or switch to text mode) at any time. Bau et 

al. found that, in a small group of middle school students (N=8), use of the text-based editor 

increased over time with experience, suggesting that as students became accustomed to computer 

science and programming, they began using the text mode more often [9]. Later work by 

Weintrop & Holbert showed that students most often switch from text back to blocks when 

adding new or unfamiliar constructs [135]. Together, these findings suggest that that students 

made use of the scaffolding of the blocks-based environment to reduce cognitive load for new 

concepts in order to gain familiarity, but once those concepts were mastered, they moved to text. 

In addition to blocks-based environments (noted above), Weintrop also tested 

bidirectional environments, and in particular the JavaScript variant of Pencil Code. [134]. He 

found that, like students who began in a blocks-based environment, students working in the 

bidirectional dual-modality programming environment (Pencil Code) scored more highly than 

those who began in the text environment [134]. Like those starting in the blocks-based 

environment, those starting in the dual-modality programming environment scored about the 

same at the end of the class after switching to Java [134]. However, unlike the blocks-based 

environment students, the dual-modality programming environment students had an increase in 
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interest in taking computer science courses in the future after switching to text, matching the 

trend in their performance, which also rose. The reason for this is an open question. It may be 

evidence that students in a dual-modality programming environment experienced less of a shock 

moving to the text environment, resulting in a lower negative impact on their perceptions and 

performance alike. It should be noted that students in the dual-modality programming 

environment had a decrease in interest in taking future courses in computer science until the 

switch to Java, unlike the students working in the blocks-based environment; further study could 

help researchers understand if this change in interest is related to the languages, the 

programming environments, or other factors. 

There are contextual considerations that may limit the impact and applicability of this 

study’s results more broadly within computer science. In Pencil Code, the Droplet Editor’s use is 

limited to drawing applications and animations using a turtle interface; as the study’s population 

consisted of high school students, the interface may not provide sufficiently interesting material 

to motivate students. Age may also be a factor; younger students may more readily take to the 

blocks-based and dual-modality programming environments and view them as more authentic 

than older students. Weintrop’s work in particular was also done in an environment that involved 

changing languages at the midpoint of the course (as the latter half of the course was in Java, 

rather than CoffeeScript or JavaScript); this required students to learn not just new syntax, but 

also new control structures, potentially increasing the cognitive load on students and impacting 

student perceptions and/or learning. My work, as outlined in this dissertation, has focused on 

investigating how the use of dual-modality programming environments and instruction 

influences perceptions of text programming as well as how such instruction supports learning in 

the classroom, including work with middle-school and college-age students in a single language 
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– Python and Java, respectively. As such, my work benefits the research and education 

communities by providing evidence of student perceptions and learning in other age groups and 

without changing the instructional language. 

 
 

Figure 2-7. Pencil Code: Blocks-based mode, text-based mode, output window [9]. 

 
Table 2-3. Summary of Multimodal Environment Affordances 
Environment Type Predecessors To Text?  Bi-Dir.? 
Alice 2.0 Blocks 

[132] 
Alice 1.0 No No 

Storytelling Alice Blocks [59] Alice 2.0 No No 
Alice 3.0 Blocks [35] Storytelling Alice, Alice 2.0 [35] No Yes 
Blockly Blocks 

[139] 
- No No 

Pencil Code (Droplet) Dual [7] Pencil Code – Text No Yes 
BlueJ Hybrid [67] Blue [63] Yes Yes 
Greenfoot Hybrid [51] BlueJ, Karel [51] No Yes 
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CHAPTER 3 
STUDY OF PERCEPTIONS OF PROGRAMMING 

My work in the area of computer science education research has been largely shaped by 

my professional experiences within the teaching field, in which I have been working for over 15 

years on a full time, part time, and volunteer basis. The challenges faced by underrepresented 

groups at varied age groups – from Kindergarten to the college level – first inspired me to 

examine how students’ perceptions of programming and the design of different tools impact 

learning and interest in computing. Eventually, my studies of perceptions led to questions about 

the efficacy of learning environments and how they can be improved. As such, my early work 

involved examinations of perceptions, environments, and learning measurements. 

I began my work by examining perceptions of blocks-based environments (Section 3.1) 

and how students move from them to text languages (Section 3.2). I wanted to explore how 

children perceived programming: specifically, how do children perceive the act of 

programming, what constructs do they perceive as hard or easy, and how does it differ 

based on prior experience? To identify these perceptions and explore their connection to 

learning, I conducted a study during a summer camp with young children in 2015 and presented 

a poster at SIGCSE 2018 [15]. I also developed instruments to measure perceptions of blocks-

based constructs with elementary school students for use in the study. In addition, based on my 

own teaching experience and available literature, I believed that students with experience in 

blocks-based languages nevertheless sometimes struggled when moving to text environments; I 

wondered, how can we help ease students into text from blocks-based environments? As 

such, I submitted a position paper at IDC’s “Every Child a Coder” workshop, which focused on 

bridging blocks and text representations (Summer 2015)  [57]. 
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3.1 Study: Construct Perceptions in Children (Summer Camp) 

I conducted an initial study of programming and language construct perceptions of 

elementary school students as part of a summer camp program in 2015. The purpose of this study 

was to identify what role prior programming experience played in perception of the act of 

programming and specific language constructs. This study’s results provided guidance for my 

work focusing on blocks, text, and dual-modality programming environment analysis. I 

presented the results of this study as a poster at SIGCSE [15]. 

3.1.1 Study Context 

The study was conducted as part of a children’s summer camp program held at a 

medium-sized university in the southeastern United States in 2015. Two separate week-long 

summer camps on game development were conducted (one each in July and August of 2015), 

eight hours each day (9AM to 5PM). During the camps, participants learned programming 

through video game development and created games for about four hours per day. The summer 

camps used the Scratch environment and a modified variant of Google’s CS-First curriculum for 

games [140]. They also visited campus studios, heard from industry guests, and played 

computational-thinking games. All activities were guided by three camp facilitators without 

backgrounds in computer science who were trained for one week in the CS-First curriculum by 

computer scientists. The camps were not designed around the purpose of this study; instead, I 

studied how participants’ perceptions of programming changed after experiencing these camps, 

which are like many other computing camps offered around the world. 

3.1.2 Procedure 

I recruited children to participate in the study from the camp attendees; no compensation 

was provided to the children. Participants were recruited via an email that was sent to guardians 

of summer camp attendees before the camp began, with IRB-approved consent forms available 
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to guardians on the first day of camp. Voluntary assent was also obtained from the children at the 

beginning of the camp before the questions were asked. It was made clear to guardians and 

children that participation or non-participation in the study would not impact their experiences or 

opportunities during the camp. Of 51 summer camp attendees, I collected data on the responses 

of 28 / 55% of the children (16 in July 2015 and 12 in August 2015). Seven participants were 

female and 21 were male; 13 of 28 (46.4%) children indicated they had prior programming 

experience (generally, Hour of Code [102] or Scratch [110] activities). 

I collected data over two weeks about the participants’ perceptions of programming via a 

series of semi-structured interview questions which I verbally administered on the first, second, 

and last days of the summer camp (Table 3-1). Most interviews were audio-recorded; some 

participants preferred their responses be written down. I asked participants if they had ever 

programmed before and what they thought programming was on the first day, as well as their 

initial impressions of programming. I asked about their opinions on Scratch programming 

constructs on the second day, after they had started using them. Follow-up questions on the last 

day were planned, but not asked in the July cohort due to logistical issues. In August, I also 

asked questions on the last day. Specifically, I repeated questions about their impressions and 

asked about their desire to program again in the future. 

Table 3-1. Interview Questions by Topic 
Topic Questions 
Prev. Experience Have you ever programmed before? 
Prog. Definition Do you know what programming is? What is it, in your own words? 
Prog. Impressions Do you think programming is fun or interesting? Why do you think that? 

How do you think programming can be useful to people? 
Constructs What programming ideas were hard / easy / fun? Why do you think that? 
Future Interest Do you want to program again in the future? Why / why not? 
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3.1.3 Qualitative Measures 

Based on existing literature and my own experience teaching children programming, I 

had some expectations regarding student perceptions about programming. Since children without 

experience lack understanding of what programming involves [46], I thought I would see 

evidence that they conceptualize programming according to results, e.g., artifacts they can see 

and interact with or have learned about from peers, parents, and teachers, but not the lower-level 

processes and functions involved in creating artifacts – e.g., providing instructions and 

communicating with devices (Table 3-2). This would also align with the Neo-Piagetian 

sensorimotor stage of development, in which learners know what an artifact is and does, but not 

how it works. In contrast, I thought children with experience would have gained insight and 

understanding through practice and application, allowing them to conceptualize these low-level 

functions – in line with what we might expect from learners at preoperational or later cognitive 

stages. If this expectation were confirmed, it would be possible to tailor instruction for children 

based on experience level as their knowledge matures. Past work has shown that some constructs 

are used more often than others by novices [24, 21], so I expected that perceived difficulty of 

constructs would follow similar patterns. Based on my own anecdotal experience teaching young 

children in the TurtleArt environment [18], students took naturally to loops, but sometimes 

struggled with if-else branching, so I expected that children would identify loop-based constructs 

as easier to work with than if-based ones, and vice-versa. 

Table 3-2. Expectations of Perceptions based on Programming Experience 
No Prior Programming Experience Prior Programming Experience 
Conceptualize programming according to 
results, e.g., artifacts 

More mature understanding of process and 
functionality 

Conceptualize programming according to 
what they have learned from peers, parents, 
and teachers 

insight & understanding gained through  
personal practice & application to create 
artifacts 
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3.1.4 Coding Process 

Using an inductive qualitative coding approach as described by Auerbach and Silverstein 

[4], my advisors and I created and assigned codes to the participants’ interview responses. 

Responses to questions addressing specific constructs (blocks in Scratch) were qualitatively 

coded by participant identification of the construct. Sometimes participants referred to specific 

sets or subsets of constructs (e.g., “the green ones” or “the ifs”); these were assigned to set or 

subset codes (e.g., “SUBSET: IF”). To validate the reliability of the code book for characterizing 

the participants' interview responses, I computed interrater reliability on the second round of 

coding, in which all 3 researchers qualitatively coded all responses from 33% of the August 

participants. Since there were multiple raters, I used Fleiss' kappa [47]. Since each response 

could have multiple codes, each possible code was transformed into a yes/no variable to compare 

raters' consistency in assigning codes. Interrater reliability was computed for each question and 

possible response code, and average agreement between coders was kappa = 0.8045, 

characterized as substantial by typical interpretations of kappa [128]. 

3.1.5 Programming Definition Themes 

For questions about perceptions of programming in general, codes were grouped into 

themes using an inductive card-sorting approach (Table 3-3) [114]. I performed the initial card 

sort on codes for the relevant questions. These themes and the codes were reviewed and 

discussed by all researchers until consensus was reached. I identified themes that emerged 

related to my expectations, including responses that focus on results of programming: (1) 

Creation – a way to create an artifact (such as a program or media content); and (2) Helping – 

aiding people or society through robots and assistive technology. I also identified themes for 

responses that dealt with the process and function of programming: (3) Control – exerting control 
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over something / someone (such as a computer or robot); and (4) Communication – transfer of 

messages or using an encoding medium to transfer information (such as instructions or ideas). 

Table 3-3. Programming Definition Themes 
Theme Description Example Response 
Creation way to create an artifact “Programming is making things for a 

computer” 
Helping aiding people / society “It could help the elderly walk” 
Control exerting control over some entity “making… any character… do 

something” 
Communication transfer of messages / information “It is telling the computer what to do” 

 

3.1.6 Findings – Perceptions of Programming 

Before the study, I had expected that children without prior programming experience 

would perceive programming in terms of its results, and that children with prior experience 

would have a more mature understanding of process and functionality. Participants were asked at 

the beginning of the camp a) if they knew what programming is, and if so, to provide a 

definition; and b) how programming can be useful to people. Their responses to these two 

questions were then coded and combined (Table 3-4). Many with and without experience defined 

programming in part by referring to creation of artifacts (67.9%, n=19) and helping people (50%, 

n=14). However, few students without experience referred to communication (6.7%, n=1) or 

control (13.3%, n=2); this is in contrast to students with experience, who referred in larger 

numbers to communication (30.8%, n=4) and control (69.2%, n=9). This pattern matched my 

expectation that children without prior experience tend to perceive programming in terms of its 

results, especially of artifacts and helping people. It also provided evidence that participants with 

prior programming experience perceive programming at least in part in terms of function and 

process (though not to the exclusion of other ideas like creation). It also suggested that children’s 

perceptions broaden to include lower-level aspects of programming as they gain experience. 
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Table 3-4 summarizes the percentage of participants whose responses fit in each theme; as 

responses could have more than one theme expressed, numbers do not sum to 100%. 

Table 3-4. Percentage and Number of Participant Responses by Theme 
Experience? Creation Helping Communication Control 
No 66.7% (10) 40.0% (6) 6.7% (1) 13.3% (2) 
Yes 69.2% (9) 61.5% (8) 30.8% (4) 69.2% (9) 
All 67.9% (19) 50.0% (14) 17.9% (5) 39.3% (11) 

 

3.1.7 Findings – Perceptions of Constructs 

Based on my prior experience teaching young children to program, I believed that some 

control structures would be more intuitive to inexperienced children than others: specifically, 

that loop-based structures would be easier and if-based branching would be harder. To explore 

whether participants perceived loop-based constructs as easy compared to other constructs, on 

the second day, I asked students which constructs they found easy and why. Again, I compared 

participants with and without prior programming experience, and in particular I examined how 

loop-based constructs compared with if-based constructs. 

The 15 inexperienced participants most often identified loops (40%), simple events, 

(60%), and motion (53.3%) as easy – and loops were indicated far more often than if constructs 

(13.3%). It is notable that both of the students who identified if-based constructs as easy also 

identified loop-based constructs as well. These results suggest that these novices found loop-

based constructs – particularly the variants found in Scratch – easier to learn and work with than 

other constructs. By comparison, among the 13 participants with prior programming experience, 

a majority identified both loop-based (53.8%, n=7) and if-based (53.8%, n=7) constructs as easy, 

along with events (61.5%, n=8), motion (53.8%, n=7), and visuals (“Looks” blocks in Scratch) 

(46.2%, n=6). This suggested that the difference in perception of these control structures 

subsides with experience. Table 3-5 shows the percentage of participants who identified 
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constructs as easy within the most commonly mentioned sets; again, participants could identify 

more than one construct in a response. 

I also asked participants which constructs they found hard and why on the second day. 

Table 3-6 shows the percentage of participants who identified at least one construct as difficult 

within the most commonly mentioned sets. Among participants without prior experience, only 

13.3% (n=2) identified loop-based constructs as hard. Other construct types were noted much 

more frequently – particularly coordinate-based motion (26.7%, n=4) and sensing (26.7%, n=4) 

blocks. For the 13 participants with prior experience, other construct types were more often 

identified – specifically, broadcast (23.1%, n=3) and events (30.8%, n=4). 

Table 3-5. Percentage of Participants Saying Constructs EASY for N > 4 (14.3%) 
Exp? If Loop Color Events Motion Visuals Sound 
No 13.3% (2) 40.0% (6) 13.3% (2) 60.0% (9) 53.3% (8) 20.0% (3) 26.7% (4) 
Yes 53.8% (7) 53.8% (7) 30.8% (4) 61.5% (8) 53.8% (7) 46.2% (6) 30.8% (4) 
All 32.1% (9) 46.4% (14) 21.4% (6) 60.7% (17) 53.6% (16) 32.1% (9) 28.6% (8) 

 

Table 3-6. Percentage of Participants Saying Constructs HARD for N > 4 (14.3%), & If / Loop 
Exp? If Loop Coord. Events Broadcast Sensing 
No 13.3% (2) 6.7% (1) 26.7% (4) 6.7% (1) 13.3% (2) 26.7% (4) 
Yes 7.7% (1) 15.4% (2) 7.7% (1) 30.8% (4) 23.1% (3) 7.7% (1) 
All 10.7% (3) 10.7% (3) 17.9% (5) 17.9% (5) 17.9% (5) 17.9% (5) 

 

3.1.8 Influence on Course of Research 

The constructs students identified as easy and hard differed – particularly within control 

structures. How students perceive constructs may be dependent in part on the representation of 

those constructs – particularly whether they are presented as blocks or text – rather than an 

inherent feature of the construct. As the students programmed in Scratch, all constructs were 

blocks-based; if constructs were presented to students as text, they may have perceived them 

differently. In addition, it was notable that some students also differentiated between 
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“programming” and “coding” in interviews; for example, one participant said, “I know how to 

code, but I don't know how to program”. The direction of my work shifted based on the results of 

this study; in the next phase of my research, I began to focus on the differences between blocks 

and text representations, the perceptions users held of each, how they interact with learning, and 

how we might develop a bridge to help students move from blocks to traditional text 

representations used in industry. 

3.2 Position Paper: Bridging Blocks and Text 

Early in my work I presented a position paper at a workshop on computer science 

education at the ACM International Conference on Interaction Design and Children [57]. In that 

work, I posited that, while blocks-based learning tools help facilitate the learning of computer 

science concepts at younger ages, students encounter challenges translating their experiences into 

production languages. Blocks-based learning tools and environments had made significant gains 

in engaging a younger audience and making programming more accessible by incorporating 

visual elements, drag-and-drop program construction, and media-rich environments, but while 

platforms were friendly for young children, they were largely built as sandboxes and at the time 

used languages that were environment-specific [77, 28]. I argued that, although these tools had 

shown great promise in exposing younger audiences to computer science and computational 

thinking concepts, what was still lacking was that bridge from the simplified and abstracted 

languages and tools to more advanced, complex environments. These more advanced 

environments had shown success at the high school and college levels in transitioning students to 

production programming languages used by programmers today such as Java and the more 

complex IDE tools used for these languages (e.g., Eclipse, Figure 3-1). A bridge would facilitate 

transfer of knowledge and skill from the early educational environments to an applied one while 

remaining accessible. I had further argued that this bridge could be explicit scaffolding that 
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facilitates movement from existing educational environments to production languages, or a 

completely new environment developed explicitly to grow with students as their cognitive 

abilities mature. Thus, in this paper [57] I proposed that the robust and effective development of 

such a bridge presents a key research challenge of introducing programming to younger 

audiences. This research challenge laid the foundation for the next phase of my research, namely, 

dual modality programming environments, which I anticipated might serve as that bridge from 

blocks to text representations. 

 
 

Figure 3-1. Eclipse IDE [141] 
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CHAPTER 4 
STUDY OF DUAL-MODALITY PROGRAMMING ENVIRONMENTS 

Based on my position paper and work during the summer camp, my work evolved to 

focus on dual-modality programming environments, which I anticipated could help bridge the 

gap between blocks and text representations. I developed dual modality representation tools in 

the form of Pencil Code’s Python variant (Section 4.1), developed a custom assessment 

instrument using blocks and text representations (Section 4.2), and explored dual-modality 

programming environments from a perception and learning perspective using the Python variant 

of Pencil Code (Section 4.3). This work was principally centered on work with middle school 

students working in dual-modality programming environments, as by this age students have 

more developed reading and writing skills that provide the foundations for text-based 

programming. In this phase of my work, I conducted one study with middle school students 

(Spring 2017), presented a paper and poster at ICER’s doctoral consortium (Summer 2017) [13], 

and presented a paper at VL/HCC (Fall 2019) [14] based on the middle school study. This work 

also provided the foundation for my final study at the college level. 

4.1 Development: Python Variant of Pencil Code 

Pencil Code, discussed earlier, is a turtle-based web application inspired by LOGO and 

blocks-based environments. Its Droplet Editor allows users to switch between blocks-based and 

text-based representations of the same program in real-time [9, 7]. The first version of Pencil 

Code allowed users to write programs in CoffeeScript; later, JavaScript was also added. 

However, JavaScript’s syntax can be very complex, and CoffeeScript has limited use in industry 

and academia. By comparison, Python has been recognized as a language that can help students 

learn computer science in early courses [8] which also is in common production use. In order to 

explore dual-modality programming environments in the context of learning and perceptions of 
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programming, I needed a dual-modality programming environment that would avoid perceptions 

of inauthenticity of the text-based programming language. I integrated a Python runtime into 

Pencil Code in order to make available a language in common industry use – compared to 

CoffeeScript – while maintaining low-syntax threshold – compared to JavaScript. After 

developing this tool, I used it when running a study with middle school students (detailed later in 

this chapter). Pencil Code’s Python variant is available for download via GitHub: 

https://github.com/cacticouncil/pencilcode. 

4.1.1 Description of Work 

The work to add Python to Pencil Code involved several steps: 

Integration of a Python interpreter and runtime into Pencil Code’s web application 
Writing Python routines for all language features and functions present in Pencil Code 
Developing a “palette” that mapped Python language constructs to block representations 

 

Existing work on Droplet (Pencil Code’s editor) provided Python parsing without 

integration of an additional language parser, allowing me to focus on the runtime and 

representation. The architecture of Pencil Code’s Python variant is shown in Figure 4-1; Python 

specific modules, which I developed with others as described below, are highlighted in gray. 

4.1.2 Development 

The development of the Python variant of Pencil Code was done by a team composed of 

myself as the team lead and five undergraduate students1. This section details how the work was 

divided and completed. 

 
1  Undergraduate students Stevie Magaco, Julien Gaupin, Scott Settle, Jackson Yelinek, and Kristofer Soto 
contributed to this project.  

https://github.com/cacticouncil/pencilcode
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4.1.2.1 Language interpreter runtime 

Before other my work could begin on the Python variant, a Python interpreter and 

runtime needed to be integrated into the web application. I completed this work in Summer of 

2016. The majority of this work involved integrating elements of the Brython interpreter [142], 

which I used to package user-generated Python scripts as web requests, and integration of the full 

Skulpt interpreter [143], which I used to execute the scripts after they were packaged. These 

interpreters were used to parse and run python text within the web-based Pencil Code runtime. 

4.1.2.2 Python routines 

Using the integrated language runtime, our team (undergraduate students and I) created a 

binding layer to wrap the existing Pencil Code function calls so that they could be called from 

within the Python interpreter. I completed the initial subset of basic features and the binding 

layer design; the undergraduate students on the team worked from this basis to add additional 

functionality and correct issues that arose. The binding layer was composed of both JavaScript-

side and Python-side elements from wrapping and unwrapping routine calls. 

4.1.2.3 Palette (text-to-blocks mapping) 

I oversaw the palette development. The mapping was completed primarily by the 

undergraduate students on the team. This is part of the “Python Blocks” module in Figure 4-1. 

4.1.3 Results 

The initial Python variant of Pencil Code was completed in January 2017, allowing 

several months of testing before the variant was used with students. Once completed, the Python 

variant (Figure 4-2) of Pencil Code was used to investigate the relationship between perceptions / 

performance and blocks / text / dual mode environments. More details of this study are outlined 

in Section 4.3. 
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Figure 4-1. Pencil Code architecture, with added Python-variant modules highlighted in gray. 

 

 
 

Figure 4-2. Pencil Code Python variant: Blocks-based mode, text-based mode, output window. 
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4.2 Development: Custom Dual Modality Assessment (Python Text/Blocks) 

In addition to having a suitable dual-modality programming environment to study student 

perceptions, an assessment was also needed to measure any notable knowledge differences in 

such a study. No assessment existed that provided both text and blocks representations, but I 

intended to study programming knowledge separately from syntax, necessitating the 

development of a new assessment. Some assessments, such as the FCS1 [122], are not available 

to the research community due to copyright limitations, while those available, such as the SCS1 

[98], were only suitable for a single measurement (limiting assessment to a single point in time), 

and I intended to measure knowledge at multiple points with middle school students [98]. I 

sought to address this issue by creating an assessment with three isomorphic variants of each 

question so that the same concept could be tested at three separate points in time to measure 

change in performance over time. This custom dual modality assessment was developed in the 

spring of 2017. 

4.2.1 Description of Work 

Development of the initial version of the assessment proceeded in several phases: 

1. Selection / construction of questions 
2. Development of multiple representations 
3. Creation of isomorphic variants 

 

Question topic, style, and in some case content were influenced by existing testing 

materials, including the SCS1 and AP Computer Science Principles Exam descriptions [98, 144]. 

4.2.2 Development 

I started developing the custom assessment by working from the SCS1 (Figure 4-3a). 

However, it was already known that the SCS1 and its predecessor, the FCS1, measure as too 

difficult for college students [122]; that meant that many questions were unsuitable for middle 
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school students. Together, my advisors and I determined that some questions should be replaced. 

I developed new questions using the AP CSP exam guide [144] to replace those SCS1 questions 

considered unsuitable as part of the assessment. Some CSP question samples use a graphical 

display to represent programming output (e.g., a character moving on a grid); I elected to use 

Pencil Code-style turtle displays to present a familiar visualization for students after they had 

worked in Pencil Code. I developed these questions in same multiple-choice format as the SCS1 

and other concept inventories. 

Once created, the questions were reviewed by myself and my advisors. Our goals 

included a) creating questions of appropriate difficulty for middle school students, with some 

questions being easy, medium and hard; b) considering the specific constructs / programming 

topics that should be covered; and c) developing appropriate distractors to detect student 

misconceptions. All questions involved one or more code snippets as part of the questions and/or 

answers.  Over multiple passes, we refined questions using these considerations until we agreed 

that these objectives had been met and that the assessment was ready for use in the study. 

The first version of the questions was developed in text. Once a text version of the 

question was developed, the Droplet editor was used to visualize the blocks-based version of the 

same code snippets. This was done for each question and variant (Figure 4-3a). For each 

question developed, two additional isomorphic variants were also developed so that the same 

concept could be tested at up to three points in time. This was done by changing strings, variable 

names, and/or code ordering; and sometimes by modifying images representing graphs to change 

positioning (Figure 4-3b). 

I developed questions based on a) computational concept, b) level of reasoning, and c) 

level of difficulty (Table 4-1). Computational topics included if-else, while-loops, for-loops, and 
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functions. There were four (4) unique questions for each concept. Where practical, questions 

addressed level of reasoning by using simple tracing questions (for preoperational reasoning) 

and code-completion questions (for operational reasoning). These question types were selected 

to align with question types from the SCS1 [98]. Each concept also had questions at easy, 

medium, and hard difficulty levels. I increased the difficulty of questions by adding multiple 

layers of abstraction (such as nested function calls) and increasing the complexity of code blocks 

to be traced or completed. The assessment is included, in its entirety, in Appendix G. 

4.2.3 Impact on Course of Research 

The development of this assessment played an important role in charting the course for 

my research. It enabled the first study of dual-modality programming environments I conducted 

(detailed in Section 4.3) and served as a comparison point, via item analysis, against the SCS1 

when evaluating information from the CS1 data set (detailed in Section 5.4). This was 

instrumental in deciding upon the form of the concept inventory for my final dissertation study. 

  
 

Figure 4-3. Custom assessment: a) blocks / text variants (left) and b) isomorphic variants (right) 
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Table 4-1. Number of Questions by Concept, Type, Difficulty 
Concept Easy Medium Hard 
Tracing 2 5 3 
· If-Else 1 1 0 
· While-Loops 1 2 1 
· For-Loops 0 1 1 
· Functions 0 1 1 
Completion 2 3 1 
· If-Else 1 1 0 
· For-Loops 1 1 0 
· Functions 0 1 1 

 

4.3 Study: Perceptions and Concept Assessment (Middle School) 

Following up on my earlier work studying perceptions of programming and constructs, I 

wanted to examine bridging blocks-based languages to production environments. Based on my 

teaching experience and work by Tabet et al [119], I surmised that middle school students could 

grasp and work in Python. Following the development of the Python branch of the Pencil Code 

environment and the custom dual modality assessment, I conducted a study at a middle school in 

Central Florida to collect data on and identify trends in student learning and perceptions of 

programming and computer science when using bi-directional dual-modality programming 

environments. The focus of the initial analysis of the results was perceptions of programming 

specifically: i.e., how do bi-directional dual-modality programming environments interact 

with student perceptions of programming? In designing a study to answer this question, I was 

particularly interested in examining student confidence in their own ability to program, and 

student perceptions of text- and blocks-based environments. 

4.3.1 Study Context 

I ran my study at a large public middle school in Central Florida in 2017. The study 

involved participants in a single technology course (with six class periods) under the supervision 

of a single instructor. Prior to participation in the study, the course instructor had planned to offer 
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programming instruction as part of the curriculum of the course. I partnered with the teacher to 

use curriculum I designed and my study framework to offer this instruction. The curriculum 

focused on variables, loops, selection, and functions. Of 24 school days, nine were dedicated to 

state standardized assessments, leaving 15 days of instruction and three days of surveys and 

assessments for this study. Depending on the testing schedule, participants received multiple 

days of CS instruction per week. Each class period was 38-46 minutes, for a total of 12 contact 

hours. The classroom teacher and I co-instructed the course during the instructional period. 

4.3.2 Participants 

I conducted my study with six classes of eighth-grade students. Before the study began, 

participants took home an IRB-approved letter describing the study’s purpose and informing 

guardians of their rights to opt their child out of the study. I also asked students on the first day if 

they voluntarily assented to participate in the study. No compensation was provided. Of 158 

students in the six classes, 129 students agreed to participate in the study. Students who did not 

agree to participate received the same instruction and in-class programming assignments but did 

not take study surveys. 

I obtained demographic data by self-report. The participants ranged in age from 12 to 16 

years old at the time the study was conducted: 86.0% (n=111) were 13 to 14 years old; 2.3% 

(n=3) were 12; and 5.4% (n=7) were 15 to 16 years old. Eight participants did not provide their 

age. 39.5% (n=51) of participants identified as female, and 51.9% (n=67) identified as male; one 

participant (0.8%) identified as gender neutral. Ten participants did not provide a gender. The 

classes were ethnically diverse. Of participants reporting one ethnic background, 25.6% (n=33) 

identified as white; 30.2% (n=39) as Hispanic/Latino; 4.7% (n=6) as black or African American; 

4.7% (n=6) as Asian; and 1.6% (n=2) as Native Hawaiian or Pacific Islander. 29.5% (n=38) of 

participants reported multiple ethno-racial backgrounds. Five did not note a background. 
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4.3.3 Study Design 

The entire study spanned the course of five weeks. Classes were taught using three 

tailored versions of the Pencil Code environment’s Python language variant which limited mode 

of use based on condition. I subdivided the six classes into three condition groups of two classes 

each: Blocks, Dual-Modality, and Text. Figure 4-4 summarizes the amount of time each 

condition spent in blocks, dual-modality, or text mode and on assessments. Participants in the 

Blocks condition spent eight days using a blocks-based environment, followed by seven days 

using text; those in the Dual-Modality condition spent four days in blocks, five days in the dual-

modality programming environment, and six days in text; and participants in the Text condition 

used a text-only variant of Pencil Code for 15 days. Note that text syntax was available to all 

students at all times due to the design of the Pencil Code blocks, which presents the full text 

syntax of the constructs on the blocks. Three days were dedicated to assessments and surveys 

throughout the study. 

  
 

Figure 4-4. Timeline of time spent in text / dual / blocks modes by condition. 

 
4.3.4 Data Collection 

I collected data about participant demographics (Appendix C) as well as attitudes and 

programming competencies via computer-based surveys (Appendix D) and assessments 
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(Appendix G) on the first day, at the midpoint, and on the last day of the programming 

instruction period. 

4.3.4.1 Surveys 

Participants were surveyed about their general attitudes on programming using variants 

of questions first proposed by Ericson and McKlin [39]. Ericson and McKlin’s questions were 

general computing questions, so I modified them to specifically address programming. For 

example, I asked students to rate agreement with this statement: “I can become good at 

programming.” In addition, at the midpoint and end of the study, I asked participants about their 

perceptions of blocks and text (see Table 4-2). Survey questions used a 7-point Likert scale to 

rate agreement/disagreement (“Strongly Disagree”, “Disagree”, “Somewhat Disagree”, 

“Neutral”, “Somewhat Agree”, “Agree”, “Strongly Agree”). Each question about perceptions of 

blocks and text was paired with a free response prompt: “Why do you feel this way?” All 

students who agreed to participate in the study (n=129) took the initial (pre-study) survey. Due to 

class absences, of the 129 participants, 38.8% (n=50) participated in the mid-survey, and 57.4% 

(n=74) participated in the post-survey. 

Table 4-2. Questions Comparing Blocks & Text Programming 
Num Prompt 
Q11 I think programming in text is easier than programming in blocks. 
Q10 I think programming in blocks is easier than programming in text. 
Q12 I think programming in blocks is frustrating or hard. 
Q13 I think programming in text is frustrating or hard. 
Q15 I think learning to program in text is more useful than blocks. 
Q14 I think learning to program in blocks is more useful than text. 
Q16 I would prefer to program using text as opposed to blocks. 
Q17 I would prefer to program using blocks as opposed to text. 

 

4.3.4.2 Assessments 

I assessed participants’ learning using the custom assessment I developed (Section 4.2) 

based on questions from the SCS1 [98] instrument and sample questions in the Computer 
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Science Principles AP course and exam description [144]. Each question focused on a different 

programming concept, with an equal number of questions assessing for-loops, while-loops, 

selection (if-else), and functions. Blocks-based and text-based isomorphic variants of each 

question were developed at multiple levels of difficulty. As most students (n=87) had prior 

experience in blocks, the initial assessment used only blocks, while the final assessment used 

only text. The mid-assessment was dependent upon condition, with blocks condition participants 

receiving a blocks-only assessment, text condition participants receiving a text-only assessment, 

and dual-modality condition participants receiving a mixed assessment. 

4.3.5 Data Analysis 

To investigate the programming environment and students’ perceptions of blocks and 

text, I analyzed the Likert responses and free response question answers. I converted all Likert 

responses to numeric values (1 to 7), inverted the value for blocks-preference responses, and 

calculated the midpoint of the two variants for question pairs. I grouped responses with 

midpoints of 1-3.9 as “disagree”, 4.0 as “neutral”, and 4.1-7 as “agree”. I present the proportion 

of students who agreed, disagreed, or were neutral for each question in Figure 4-5. The n varies 

per question since not all students opted to answer all questions. I qualitatively coded the free 

responses to identify themes related to participants’ perceptions of blocks and text programming. 

Using an inductive qualitative coding approach [4], I created and assigned codes to each 

response. If there were two or more distinct ideas addressed by a response, I assigned multiple 

codes to that response. Each code included an over-arching theme as well as a sub-code to 

identify the specific reasoning. Each response fell into one of these themes: Pro-Text, Pro-

Blocks, Anti-Text, Anti-Blocks, Neutral. The sub-codes included descriptions of the mode they 

liked / disliked, such as Easy, Hard, Efficient, and Fun. To compute interrater reliability for each 
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question and response code [47], a second researcher coded 16% of the responses2. The average 

agreement between coders was Cohen’s kappa = 0.7845, which is characterized as substantial 

agreement [128]. 

 
 

Figure 4-5. Distribution of survey Likert responses. 

 
4.3.6 Findings 

My findings focused on key patterns from my survey on participants’ perceptions of 

programming in blocks or text by condition after switching to text-only representations. I 

examined the distribution of participant responses to Likert scale questions regarding 

participants’ perceptions of text as easy (Q10/Q11) and frustrating (Q13) and also the coded 

responses to the accompanying free response questions. 

Dual-modality condition participants most often rated text as easier than blocks 

compared to blocks condition participants (Q10/Q11, Likert). On the final survey, 18.5% 

(n=5) of those in the dual-modality condition identified text as easier than blocks, while 14.8% 

 
2 Pedro G. Feijóo-García coded 16% of the student responses as part of this study. 
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(n=4) were neutral and 66.7% (n=18) disagreed. In contrast, fewer participants in the blocks 

condition agreed that text was easier than blocks (agree: 8.3% (n=1); neutral: 25.0% (n=3); 

disagree: 66.7% (n=8)). Text condition students rated text representations as easier about as 

frequently as dual-modality students but disagreed less often (agree: 16.0% (n=4); neutral: 48.0% 

(n=12); disagree: 36.0% (n=9)). 

Dual-modality condition participants perceived text more favorably than blocks 

condition participants (all free response). For every one of the text-blocks comparison 

questions I asked, dual-modality condition participants were 1) more often pro-text and 2) less 

often anti-text than their blocks condition counterparts. Dual-modality condition participants also 

frequently responded using comparisons between the environments when giving a neutral 

response. 

One common reason given by dual-modality condition participants for why they liked 

text was that they felt it helped them make rapid progress, with students noting: “…it is a lot 

faster and easier to understand” [H002] and “…I think text is faster and makes it easier to change 

the code” [H024]. These responses suggest that dual-modality condition participants developed 

an appreciation for the benefits of text in terms of efficiency in programming. Another common 

reason cited by dual-modality condition participants for preferring text over blocks was that they 

found text to be more organized and easier to debug: “It's faster for me to recognize the error in 

my code when looking at text and it is easier to organize” [H002]. They also felt text offered 

more flexibility than blocks: “text is more free in what you can do while blocks have very 

restrictive ways of coding” [H099]. Dual-modality condition participants who perceived text less 

favorably than blocks cited syntax issues as their biggest challenges: “because when you [are] 
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programming in text there is a million ways you can mess up the coding. and it[‘]s not always 

easy remembering the codes” [H042]. 

Many responses given by dual-modality condition participants were comparative, noting 

pros and cons of a particular mode. One dual-modality student said, “because… [blocks are] 

easier but at the same time you need to get used to it [text]” [H126], while another noted that “I 

think that they both have their advantages” [H065]. The comparisons expressed in these 

responses are evidence of a more nuanced view of programming representations, weighing the 

benefits and drawbacks of blocks and text. 

On the other hand, participants in the blocks condition were more negative about text 

programming, frequently mentioning syntax and detail issues that they felt got in their way: “it 

takes to[o] long to write and any little mistake can mess up the whole thing” [B047]. Another 

blocks condition participant said, “Any small mistake will make it say ‘script error’” [B043]. 

From these responses, we see that blocks participants primarily focused on the difficulties that 

text presented and were not able to recognize the strengths of text in terms of organization and 

flexibility that dual-modality participants noted. 

Dual-modality and blocks conditions participants both found text frustrating, unlike 

text condition participants (Q13, Likert and free response). 56.0% (n=14) of dual-modality 

condition participants agreed that programming in text was frustrating or hard, while 16.0% 

(n=4) were neutral and 28.0% (n=7) disagreed. Similarly, the majority of blocks condition 

participants agreed that text was frustrating or hard (agree: 52.9% (n=9); neutral: 23.5% (n=4); 

disagree: 23.5% (n=3)). Meanwhile, only 33.3% (n=8) of text condition participants agreed that 

text was frustrating or hard (neutral: 37.5% (n=9); disagree: 29.2% (n=7)). 
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Many text condition participants described feeling comfortable using text despite the 

challenges they noted: “I feel it's really easy, I just need a little more practice” [T082]. In 

contrast, dual-modality and blocks condition participants mentioned similar obstacles and were 

more discouraged, rating text as more frustrating. One blocks condition participant noted that 

“[text is more frustrating than blocks because] the text has to be perfect” [B040] and one dual-

modality condition participant said, “You have to beware of many errors because when you do it 

wrong you have to figure out where you messed up and it takes a while” [H122]. These 

responses show that participants in all conditions referred to experiencing obstacles in using text 

related to syntax. Text condition participants framed them as challenges to master, while dual-

modality and blocks condition participants interpreted them as impediments that limited their 

progress. It is notable that text students spent the entire study within the text environment, and 

thus had more time to achieve a high level of comfort in text. 

4.3.7 Discussion 

In this study, I surveyed participants who transitioned from blocks to text directly and via 

a dual-modality programming environment, as well as participants learning only in text about 

their perceptions of blocks, text, and programming in general. Participants who used dual-

modality programming environments rated text easier to use when compared with those who 

moved directly from blocks to text. Both dual-modality and blocks condition participants 

experienced more frustration in text. However, I also found that, in general, dual-modality 

condition participants held positive perceptions of text more frequently across questions 

regarding difficulty, frustration, usefulness, and preferred mode of programming, compared to 

blocks condition participants. 

Perhaps not surprisingly, the blocks condition participants had a less favorable view of 

text than either dual-modality or text condition participants. Responses may reflect the 
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frustration of moving directly from blocks to text, suddenly losing the scaffolding on which they 

had come to depend, which was also supported by my classroom observations during the study. 

After moving to text, blocks students especially expressed frustration related to usability and 

increased errors. 

Dual-modality participants, notably, expressed more positive views of text representation, 

overall, than their counterparts in the blocks condition. Many dual-modality participants 

expressed positive views of working in text, stating that text was easier to understand and helped 

support their learning, while others described it as fun – suggesting that they had developed a 

level of comfort in text programming. Classroom observations during the study sessions 

confirmed that students frequently flipped back and forth between blocks and text – taking 

advantage of the scaffolding that bidirectional dual-modality programming environments 

provide. This allowed each participant to transition at their own pace, making the transition from 

blocks to text less jarring and more inviting. This complements prior work showing that students 

in dual-modality programming environments often switch between blocks and text when new 

constructs are introduced [9]. The self-paced transition is particularly important as increase in 

confidence is one of the major motivations for creating visual (and especially blocks-based) 

languages [54] and suggests that dual-modality programming environments may help achieve the 

educational goals of blocks-based environments. 

These differences between conditions provide insight that will help contextualize and 

facilitate further development of environments for learning programming. Perceptions of 

programming can impact perseverance in the field by newcomers [37]; my study demonstrates 

how those perceptions differ based on the tools used to transition between blocks and text. These 

findings suggest that educators can reduce the hurdles and frustrations students face when 
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moving from blocks to text by using an environment that bridges representations. By developing 

approaches to computer science instruction that reduce perception of difficulty and frustration, 

and improve perceptions of usefulness, we remove obstacles that participants face when first 

engaging with programming and transitioning to text-based programming.
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CHAPTER 5 
FINAL STUDY: LEARNING & DUAL-MODALITY INSTRUCTION 

My early work focused on identifying how programming environments impact novice 

programmers in terms of learning and perception. This included understanding student 

perceptions of the discipline overall and of specific programming constructs. While my work 

began in blocks-based environments common in K-12 computing education, dual-modality 

programming environments presented an interesting and unexplored area of research. As 

discussed in Chapter 4, I began to investigate dual-modality programming environments with my 

study at a middle school with the Pencil Code Python variant. Building on that work, final study 

focuses on exploring in detail the relationship between dual-modality programming 

environments in production languages and learning of programming, particularly in college. 

Many students receive some programming instruction as part of their K-12 education in 

blocks-based environments [10, 14, 16]. At the college level, however, computer science 

instruction is primarily in text-based languages [84, 127]. Though dual-modality representations 

offer students the opportunity to seamlessly transition between code representations—allowing 

them to build a conceptual bridge between blocks and text—they are also largely tied to sandbox 

environments, and few (if any) tools exist that facilitate use of dual-modality representations for 

general purpose programming in compiled languages (e.g., Java, C, and C++), making them 

more difficult to use in undergraduate instructional settings. I sought to build tools for and 

investigate the use of dual-modality programming environments at the college level for this 

reason. 

To investigate the relationship between dual-modality programming environments and 

learning, I first conducted a study to evaluate the SCS1 in the context of the target population in 

UF’s introductory computer science (CS1) course in the Fall of 2017. I then conducted a 
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comparative study of dual-modality vs text-based instruction with a baseline and intervention 

group that spanned two semesters. I ran this study while teaching UF’s CS1 course in Spring of 

2018 with a traditional text instructional approach and in Fall of 2018 using dual-modality tools 

and curricula developed as part of my doctoral work. My final study was composed of four 

distinct parts: 

a) developing a plugin for an Integrated Development Environment (IDE) providing dual-
modality representation of the Java language, 

b) developing a dual-modality curriculum for a CS1 course, 

c) validating the SCS1 for use with the CS1 population at the University of Florida, and 

d) designing, conducting, and analyzing data from a study of the relationship between dual-
modality representations, learning, and student perceptions in the classroom. 

In this chapter, I will describe development work and studies that together constitute the 

capstone of my dissertation work. 

• Section 5.1 describes my research questions, which explore dual-modality programming 
environments and their support for learning and perceptions of programming and 
computer science. 

• Sections 5.2 – 5.4 describe the key components of my dissertation work needed to 
conduct the final evaluation of the connection between dual-modality programming 
environments and learning, with studies and analyses described in sections 5.5 – 5.6. 

o Section 5.2 discusses the software development work I completed to create a dual-
modality programming environment that allows students to switch between blocks 
and text programming. 

o Section 5.3 discusses the curricular changes I made to the existing text-based CS1 
course at UF (COP 3502) to incorporate dual-modality instruction, as well as the 
ethical issues considered. 

o Section 5.4 discusses the validation and evaluation of a CS concept inventory I used 
to evaluate student knowledge and performance. 

• Sections 5.5 & 5.6 describe the final study that I conducted to evaluate how dual-
modality instruction connects to student learning (5.5) and approach to analysis of data 
collected (5.6). 
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5.1 Research Questions & Hypotheses 

My dissertation work seeks to evaluate the connection between dual-modality instruction 

and learning among students with and without prior programming experience in blocks and/or 

text environments, especially as it relates to cognitive development. My early work (Section 4.3) 

with middle school students has shown that students perceive text as easier when a dual-modality 

programming environment is used to transition between blocks and text. Additionally, prior 

research has suggested that students in dual-modality programming environments may use 

blocks when learning new constructs, but transition to text over time [9]. This is a benefit in CS1 

courses that have students who come with a variety of prior experiences – including those with 

no prior coding experiences, block-based experience, and text-based experiences – because dual-

modality programming environments allow students to self-scaffold themselves, transitioning 

when they are ready. 

In my work, I sought to uncover how dual-modality programming environments might 

help novices develop computer science knowledge and skills, including chunking and 

abstraction. Research suggests that chunking and abstraction are important mechanisms 

employed by experts that may be challenging for novices to learn [71]. By learning to employ 

chunking and abstraction, practitioners reduce their cognitive load, allowing them to more 

efficiently think about information by abstracting it to tackle complex problems [71, 72]. In 

programming, abstraction and chunking are employed by practitioners when writing code [32], 

and there is evidence that chunking and abstraction aid in reading and tracing of programs [121]. 

I anticipated that the affordances of blocks (such as the puzzle-piece mechanism) would 

promote understanding of how constructs fit together (“what goes where”). By explicitly 

“blocking” text (associating text constructs with puzzle-piece-like blocks), dual-modality 

programming environments would promote chunking and abstraction via their block-
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representation affordances. I further anticipated that the explicit display of text on blocks would 

help students learn syntax, and that dual-modality programming environments would link text 

constructs via their blocks with connective cues in the blocks environment (e.g., puzzle-piece 

connectors), which would provide scaffolding for new construct uses while students are learning 

them. As such, I hypothesized that dual-modality programming environments would support 

learning of conceptual programming knowledge by helping students overcome several 

challenges related to syntax, abstraction, and chunking, and in so doing, aid students’ cognitive 

development. 

In addition to the connection to conceptual programming knowledge, I hypothesized that 

dual-modality programming environments would promote student confidence and self-efficacy 

in programming. It has been shown that textual languages pose challenges to novices due to 

difficulties with syntax and perceptions of text languages as hard and/or intimidating [72, 54]. 

On the other hand, text languages have the benefit of being perceived as more authentic than 

blocks-based languages [134]. I expected that the association of blocks and text would reinforce 

authenticity of the experience, while the blocks scaffolding of the dual-modality programming 

environment would provide an inviting, rather than intimidating, interface. 

5.1.1 Performance Comparison in Dual-Modality vs Text Instruction 

RQ1. How do students perform in code reading and writing after learning with dual-modality 

instruction, as compared to students learning with traditional (text-based) approaches to 

instruction in CS1 courses? 

H1. Students learning using dual-modality programming environments and via dual-modality 

instruction will gain more knowledge and reach higher levels of cognitive development and 

expertise in programming as compared students learning via traditional (text-based) approaches. 
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Reasoning. Corney et al.’s  work drew on the Neo-Piagetian framework for novice programmers 

to examine student learning in a traditional CS1 course, which used text-based instruction [32]. 

This work suggests that, while most students progress beyond the sensorimotor stage, in that they 

know a program functions but not how or why [73], the majority of students are at the 

preoperational stage or early concrete operational stage. In other words, they are capable of 

simple syntax evaluation and tracing (pre-operational) or have the ability to engage in limited 

abstraction and chunking when reading code (concrete operational stage). Comparatively, a 

minority of students show mastery of concrete operational thinking (in which they can reason 

routinely with abstractions about concrete situations) [32]. 

Dual-modality programming environments delineate programming language constructs 

visually, providing connective cues in addition to the text itself. These affordances scaffold code 

chunking and abstraction.  In this way, dual-modality programming environments have the 

potential to reduce cognitive load which would allow students to engage in concrete- and formal-

operational reasoning modes – in which they can reason with abstractions about hypothetical 

situations – more readily by facilitating chunking and abstraction. This in turn will help students 

to generalize code problems based on prior experience and develop solutions for them. As such, I 

expected most students learning via dual-modality instruction would show mastery of concrete 

operational thinking by the end of the course. 

5.1.2 Performance Comparison by Prior Experience 

RQ2. How does prior programming experience affect students learning in dual-modality 

instruction as compared to students learning in traditional (text-based) approaches to instruction 

in CS1 courses? 

H2. When comparing those learning via dual-modality vs text-based environments at the end of 

the course, there will be more of a difference in programming knowledge between students with 
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no prior experience than those with prior experience. Programming knowledge will differ the 

least for students with prior experience only in text when comparing those learning via dual-

modality vs purely text-based environments. 

Reasoning. As students progress from sensorimotor to concrete- and formal-operational levels of 

development, they must develop mental models of programming, including the ability to abstract 

and chunk code [71, 32]. Students with no prior experience (in the sensorimotor stage) have no 

mental support structures or mental models of programming; as a result, they stand to gain the 

most from approaches that scaffold chunking and abstraction, as I hypothesized dual-modality 

programming environments do. 

Students with prior experience – in blocks or in text – are likely to have reached 

preoperational or concrete-operational stages and would have already developed some mental 

models of programming that aid them in abstraction and chunking. However, the literature shows 

that students may continue to face difficulties with syntax even after working in blocks-based 

environments when transitioning to text [74]. This suggests that, for students who have prior 

experience is in blocks, some of those mental models may be tied to blocks-based 

representations and may not transfer to text-based environments. Dual-modality programming 

environments provide scaffolding in the form of a bridge between blocks and text 

representations. This is reinforced by the presence of text on the blocks themselves. Direct 

transition between blocks and text, scaffolded by dual-modality instruction and dual-modality 

programming environments, would reinforce the students’ connections between blocks and text 

representations, helping students associate new text representations with block representations 

already familiar to them. 
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Students with prior experience only in text already have developed mental models of 

programming. As these students do not need to learn to program, they are unlikely to benefit 

from the blocks-based programming construct scaffolds that blocks representations provide. I felt 

that they might still benefit from the chunking mechanism provided by dual-modality 

programming environments, but if so, I anticipated that it would likely reinforce existing mental 

models rather than help develop new ones, so I hypothesized that the result would a be modest (if 

measurable) difference in ability to trace (read) and complete (write) sections of code. 

5.1.3 Classroom Experience of Dual-Modality Instruction 

RQ3. What are student perceptions of dual-modality programming environments and 

instructional approaches, and how do they change over time, in the context of a CS1 course? 

H3. Dual-modality programming environments will promote, strengthen, and support student 

confidence, motivation, and self-efficacy in programming coursework. 

Reasoning. There are accounts in interviews in the computer science education literature that 

suggest some students perceive text languages as hard and intimidating [54]. In contrast, block-

based environments were developed specifically to support student engagement and motivation 

while minimizing anxiety [54, 88]. However, some students continue to struggle with negative 

perceptions of text-based programming when they move from blocks to text [74]. Dual-modality 

programming environments provide a bridge between blocks and text representations, in effect 

providing the affordances and inviting context of blocks-based environments, while also 

providing scaffolding for learning text-based programming syntax. My findings in working with 

middle school students (Section 4.3) suggested that dual-modality programming environments 

help alleviate some negative perceptions of text. In addition, dual-modality programming 

environments allow switching between blocks and text in real-time, so students can switch into 

text easily as they come to understand constructs and integrate them into their mental models. 
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This self-paced nature of the dual-modality programming environment would provide students a 

level of control that is empowering. As such, dual-modality programming environments would 

alleviate the negative perceptions of text, thereby contributing to improved motivation and 

confidence, which have been shown to improve retention within the discipline [80]. 

5.2 Amphibian: A Dual-Modality-Representation IDE Plugin for Java 

A significant challenge to using dual-modality programming environments in instruction 

is that the dual-modality tools have been built into sandbox environments with functionality 

tailored to a specific purpose. For example, Tiled Grace [53] and Pencil Code [9] are two 

website-based environments that allow students to program in the browser without any additional 

tools, but programs are limited to turtle-graphics sandbox features; users cannot use other 

standard or third-party libraries and features. However, students in introductory programming 

classes at the college level usually use an Integrated Development Environment (IDE) which 

provides a suite of tools for programming support, including integration of standard language 

libraries. The use of IDEs is common in industry, and thus bring additional authenticity to the 

learning experience. As such, I could facilitate instruction and research via dual-modality 

representations in existing college-level curricula by integrating dual-modality tools within these 

general-purpose development environments.  

At the time I began my work, there were no dual-modality tools for standalone IDE-

based development outside of tailored sandbox environments, so I developed a plugin for IntelliJ 

IDEA based on Pencil Code’s online open-source Droplet Editor [7, 145].  Matsuzawa et al. 

previously developed a blocks-text tool for a subset of the Java language, but this was also 

limited to a turtle-graphics environment [82]. Two undergraduate students helped develop the 

IDE plugin – a software component that adds functionality by “plugging into” the existing 
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software – to enable switching between blocks and text within a production environment1. The 

plugin I developed, which I dubbed Amphibian [146], enables instructors to more easily 

incorporate dual-modality instruction into courses and enables more rigorous investigation of 

dual-modality representations in classrooms by allowing researchers to reduce other potentially 

confounding variables, such as different languages, software systems, and development 

environments. 

The Droplet Editor’s extensibility allowed me to integrate the language of choice into 

Amphibian. I noted that many introductory computer science programs at the high school and 

college levels, including those at my institution, use Java as the target language. To facilitate 

practical study of CS1 student performance in a “real-world” environment, I focused 

development on a Java variant. Amphibian allows users to switch back and forth between text 

and blocks modes, thereby enabling teachers of Java courses, including those of AP CS and 

many introductory college courses, to build blocks/text transitions into curricula. 

5.2.1 Using the Amphibian Plugin 

Amphibian uses IntelliJ’s plugin API and can be installed in the same manner as other 

plugins. Once installed, Amphibian adds two tabs to the bottom of the editor pane of any Java 

file (Figure 5-1a). The tabs allow users to switch between the text of a program (Text Mode), 

which is the default mode upon startup, and its blocks representation (Blocks Mode), and back 

again. 

In Text Mode, the editor retains all features of the IDE’s text editor, including syntax 

highlighting, prediction, error identification, recommendations, and code region identification. 

When the “Blocks” tab is selected, the editor switches to Blocks Mode, which uses the Droplet 

 
1 Undergraduate students Benjamin King and Trevor Lory contributed to this project.  
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Editor to present a toolbox from which blocks can be dragged to add them to the program 

(Figure 5-1c) as well as to display and enable editing of blocks-based constructs (Figure 5-1d). 

When in Blocks Mode, the program can be modified by adding new blocks to the program, with 

correct constructions signified by the puzzle piece style snap-together construction (Figure 5-1b) 

often used in blocks-based environments. Text in light-colored areas may be edited directly; in 

the case of variable value assignment, users may also drag-and-drop blocks representing 

variables / objects. At any time, a user can change modes using the same tabs. 

To facilitate Java programming specifically, I added object-oriented blocks, including 

classes and methods (Figure 5-2a), while access modifiers such as “public” and “private” can be 

selected from dropdown components on the blocks themselves. Similarly, built-in variable types 

for parameters of variables can be selected from a dropdown menu on the blocks (Figure 5-2b), 

and users can enter text for custom and imported types. Whenever a block is added to the 

program via the drag-and-drop interface, the embedded Droplet Editor variant adds the construct 

to the program’s text and its blocks-based representation in real-time. 

It is important to note that, as the plugin only changes the interface for editing the 

program, all IDE features remain available. Users can follow the typical workflow to build and 

run programs, including developing and running unit tests. Any Java project can be used with the 

plugin, including typical text-based and graphical applications, Android apps, and libraries. 
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Figure 5-1. Amphibian Blocks Mode editor showing a) tabs for switching between modes, 
puzzle-piece connection, b) blocks representation of the current program, and c) 
block toolbox from which users can drag and drop constructs. 
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Figure 5-2. Amphibian Blocks Mode editor showing a) Java object-oriented constructs and b) 
drop-down menus used for types and modifiers. 

 
5.2.2 Architecture 

Amphibian was developed in two distinct phases. In one, I incorporated the Java 

language into Droplet, and in another, I developed the plugin into which I embedded Droplet. 

5.2.2.1 The Droplet Editor 

To enable Droplet to process Java language constructs, I integrated a customized Java 

language parser. To do so I constructed a custom variant of the Java 9 grammar specification and 

used ANTLR [100] to generate a parser program. Once the parser was in place, I developed a 

Droplet “palette” – a set of blocks-text mappings – for Java language constructs, including 

control structures, common statements, and object-oriented constructs such as classes and 

methods. 



 

94 

5.2.2.2 IntelliJ IDE Plugin Framework 

The plugin connects to two major IntelliJ systems: the User Interface (UI) and the 

Document Manager (Figure 5-3). Whenever a Java file is opened, Amphibian adds the “Blocks” 

and “Text” tabs to the standard text editor. At the same time, in the background the blocks editor 

is loaded. This is accomplished by embedding a browser component via JxBrowser [147], which 

is preloaded with the Droplet Editor variant and custom JavaScript files, that can receive 

notifications from the plugin. When the user is in Text Mode and the “Blocks” tab is selected, an 

event is sent to the Droplet Editor which includes the current document text state. The text is 

loaded and processed, after which the embedded browser is displayed in the UI. The Java parser 

can interpret incomplete programs as blocks even when some constructs are missing. However, 

if the text syntax cannot be parsed due to irrecoverable errors, such as missing brackets, a modal 

dialog is shown to the user indicating the syntax error and directing the user to fix it in text 

mode. Otherwise, the browser editor window is shown, and user can edit the program using the 

blocks interface (Figure 5-4). 

 
 

Figure 5-3. Amphibian architecture with new elements highlighted in gray: a) Modifications to 
the Droplet Editor and b) Architecture of the IntelliJ Plugin. 
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Figure 5-4. Example of switching from text to blocks mode: a) successful change to blocks mode 
and b) syntax error message. 

 
5.2.2.3 Logging mechanism 

Any time the toolbox palette changes or a block is dragged or dropped, the event is sent 

to the log. This log entry by default is displayed in the console, but the plugin can be configured 

to forward the message to a remote server so that study data can be collected from multiple users, 

as was done in my study. In addition, whenever the program is changed, the updated text is sent 

to the IntelliJ Document Manager. This ensures that the program text is synchronized between 

Blocks Mode and Text Mode (the standard IDE text editor). In addition, this means that there is 

always a text representation of the blocks; incomplete programs will not prevent conversion from 

blocks to text. When the text tab is selected from within Blocks Mode, the current text state is 

sent again to the IntelliJ Document Manager and the display is changed back to the default text 

editor for the IDE. 

5.3 Dual-Modality Curriculum 

To facilitate student use of and learning via the dual-modality programming environment, 

I updated the UF CS1 (COP3502: Programming Fundamentals I) course materials to address 

blocks and text representations. Previously, materials were based entirely on text representations; 

I added blocks-based representations to connect the classroom lectures with the dual-modality 
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representation IDE plugin. Based on these dual-modality-representation materials and collected 

data, I evaluated student perceptions and the classroom experience when using these tools during 

the full-semester course offering which I taught in Fall 2018. 

5.3.1 Instruction 

I adjusted lecture materials – particularly slides and other visuals – to take advantage of 

the blocks-to-text dual-modality representation made available in the plugin. In lecture slides, 

rather than individual lines of text, code was presented in individual blocks, transitioning via 

animation to text to connect the representations for students (Figure 5-5). While most of the 

course was taught using dual-modality instruction, students will ultimately need to work in pure 

text environments in future coursework and their careers, so the latter part (about one-third) of 

the class was taught in text (Table 5-1). Aside from the addition of dual-modality representations 

to materials, the presentation of materials was not changed – all lecture slides and materials were 

otherwise the same between the two conditions. In other words, the lesson plans, lecture 

sequence, and assignments were the same, and the blocking mechanism was not explicitly 

highlighted separately in the intervention semester.  

In lab sessions, teaching assistants and tutors explained and demonstrated use and 

function of the dual-modality IDE plugin within the IntelliJ environment. In-lab demonstrations 

of code and concepts were conducted directly in the plugin’s dual-modality programming 

environment as appropriate. In the first lab session, students were instructed on use of the plugin: 

1. Installation of IntelliJ and Plugin 
2. User interface for swapping between blocks and text 
3. Short live-coding demonstration of “Hello World” in blocks, converted to text 
4. Demonstration of changes made in text translating to blocks when mode is switched 
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Figure 5-5. Instructional material – presentation in blocks, followed by conversion to text. 

 
Table 5-1. Course Topics & Mode for Instructional Intervention 
Unit Topic (Approx. 1 Week per Topic) Instruction 
Fundamentals of Computing Dual-Modality 
Variables & Arithmetic Dual-Modality 
Control Structures Dual-Modality 
Data Types & Objects Dual-Modality 
Methods & Collections Dual-Modality  
Engineering Process Discussion 
Mathematics of Computation Discussion 
Classes Dual-Modality 
Inheritance Text 
Input, Output, & Files Text 
Truth & Logic Discussion 
Programming paradigms Text 
Memory management Text 

 

5.3.2 Assignments 

Assignments were updated to include text and blocks representations in Droplet style 

wherever sample or demonstration code was provided (Figure 5-6). 

The assignments in the course served two primary functions in this study: 

• They provided students with a setting in which to apply concepts learned and make use of 
the dual-modality IDE plugin, which facilitated the collection of log data, and 

• Assignment scores were used as one of several measurements to evaluate student 
knowledge throughout the class. 
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Figure 5-6. Curriculum assignment documentation – sample code in blocks and text. 

 
5.3.3 Ethical Considerations 

As a matter of caution and to ensure the integrity of the curriculum, it is important to 

address ethical considerations in performing studies within classrooms where they may impact 

student learning. The study hypotheses in Section 5.1 lay out benefits I believed students would 

receive from the curriculum. As this intervention took place in a core required course, a faculty 

review by course committees was undertaken. In this section I also address potential concerns 

and criticisms of using dual-modality instruction or tools in a university course and its potential 

impact on students, such as concerns about preparation of students for future courses. 

5.3.3.1 Faculty review 

To ensure the curriculum adjustments were in line with expectations of the department, 

the proposed changes were reviewed by my advisors and other faculty members. Specifically, 

changes were presented to and accepted by the Undergraduate Curriculum Review and 

Undergraduate Curriculum committees in the CISE Department. This presentation and approval 

were noted in meeting logs and written correspondence (Appendix M). 

5.3.3.2 Delay of pure-text instruction 

The use of blocks constructs as part of the dual-modality programming environment 

could be argued to take time away from, and therefore delay, introduction of text-based 

programming instruction. However, in the case of dual-modality programming environments, 

text is introduced along-side blocks. In other words, dual-modality programming environments 
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did not delay introduction of text instruction in my study. Preconceived perceptions of 

inauthenticity of blocks could have led students, and even some faculty, to construe dual-

modality programming environments as a mental “crutch”; however, as quizzes and exams were 

text-based, students were incentivized to learn text representations. 

5.3.3.3 Cognitive overload 

Dual-modality programming environments introduce two different representations of the 

same program. It could be argued that these dual representations require more mental effort to 

consider when programming, inhibiting performance. However, in Droplet’s model, text is 

always present, and blocks are presented as colorful highlighting of text. Thus, the text syntax 

and blocks constructs are presented together in blocks mode, not as separate, disconnected 

representations. In addition, instructions presented blocks and text representations together as a 

single concept in order to minimize duplication of mental effort. 

5.4 Instrument Evaluation Study 

In order to assess knowledge in the CS1 course I studied – COP3502 at the University of 

Florida – I first investigated existing computer science concept instruments to find one suitable 

to the course’s student population. Using a computer science concept inventory instrument 

allowed me to evaluate student ability in the programming topics I am studying using an 

instrument developed by the research community for this purpose [122, 127]. I looked to the 

SCS1, which was available to the research community. However, the SCS1’s authors have noted 

that their initial results suggested its potential to discriminate by ability is limited by its high 

difficulty level [99]. Item Response Theory (IRT) measurements [5], taken for each question, 

suggest that the assessment skews toward hard difficulty, with most questions being considered 

fair, rather than good, discriminators [116]. As such, I also considered the custom dual-modality 

assessment I had developed during my middle school study. To evaluate the applicability of the 
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SCS1 and the custom assessment for use in future studies, I administered the SCS1 and custom 

assessment at the end of the Fall term of 2017 in the CS1 course, which was taught using 

traditional text-based instruction. 

5.4.1 Context & Data Collection 

I collected responses on both the custom assessment and the SCS1 from students at the 

end of UF’s COP3502 course in Fall 2017. Student responses to each question were recorded, 

individually, via Qualtrics. In addition, demographic data were collected from participants at the 

end of the same computer-based survey. Participants completed the assessment, demographic, 

and attitude questions in a dedicated room with a proctor over a period of one-hour fifty-five 

minutes. The assessment assigned to each student was determined randomly, with half of 

participants being assigned to the SCS1, and the other half being assigned to the custom 

assessment. In all, 203 students completed the custom assessment, and 199 students completed 

the SCS1. This study’s data collection was classified as exempt by UF’s Institutional Review 

Board (IRB). No compensation was provided to participants, but students who participated 

received extra credit in the course. These data were also used to decide the direction of my final 

dissertation study. 

5.4.2 Question Analysis 

I performed an initial item analysis of student responses to the SCS1 and custom 

assessment using the method outlined by Sudol & Studer [115] to determine if either or both 

were appropriate for the CS1 student population and to make a decision on an instrument for 

future work. After initial item analysis of data collection in the Fall 2017 term, I determined in 

consultation with my advisors that the SCS1 was of appropriately difficulty and covered the 

correct concepts for it to be an effective assessment instrument for future work at the college 
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level. The methods used in this analysis and the results are described and summarized in this 

section. 

I analyzed the responses to the Fall 2017 Custom Assessment and SCS1 results using the 

approaches described by Sudol and Studer [115]. As I wanted to evaluate both the difficulty of 

the items as well as their abilities to discriminate between students of different abilities, I used 

the two-parameter logistical model (2PL) approach they described. The 2PL model provides a 

difficulty level, which measures how difficult each item in the set is, as well as a discrimination 

factor, which measures how effective the item is at differentiating test takers of different ability 

levels. The results of these analyses are included in Appendix H and Appendix I. 

The item analysis revealed that the custom assessment’s questions were both too low in 

terms of difficulty and insufficiently discriminating according to ability with the tested 

population (Appendix H). Sudol noted that items typically fall in a difficulty range of -3 (easy) to 

+3 (hard) and discrimination values between 0 and 2 [115]. Six questions (37.5%) on the custom 

assessment fell outside of these ranges for difficulty or discrimination. In addition, most of the 

questions (9 of 16) were “easy” – i.e., having a difficulty rating of -1 or lower, and none had a 

difficulty of 1 or higher (i.e., none were “hard” questions). Thus, the custom assessment 

exhibited a ceiling effect with the students in the CS1 course, which would make it difficult to 

identify knowledge and cognitive differences that might manifest due to an intervention. This is 

likely due to the custom assessment’s design for middle school students (described in Section 

4.2). 

By comparison, the SCS1’s questions closely matched ideal ranges for ability 

discrimination and level of difficulty, suggesting that the SCS1 could be an effective tool with 

this population. All of the questions on the SCS1 in the analysis fell within the expected 
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difficulty range (-3 to +3) and the ideal discrimination factor range (0 to 2). In addition, for this 

population, the SCS1’s difficulty range appeared to be an excellent match; 21 of 27 questions 

(77.8%) fell within a difficulty range of -1 to +1 (“medium” difficulty), with only two questions 

(7.4%) under -1 (“easy”) and four (14.8%) over +1 (“hard”) (Appendix I). As a result, I decided 

to use the data collected via the SCS1 to assess knowledge in the study outlined later in this 

chapter. 

5.5 Study: Dual-Modality Instruction, CS Learning, and Classroom Experience (CS1) 

I investigated the use of dual-modality instruction and student learning in a study at the 

college level in a multi-section CS1 course (UF’s COP3502), which is taught in the Java 

language, across two 16-week semesters (n=673). The course consisted of two large weekly 

lecture meetings and a weekly small lab meeting. I taught the class in both semesters. The first 

semester (n=248), acting as a baseline group, was taught using traditional, text-based instruction. 

The second semester (n=425), acting as an intervention group, was taught using dual-modality 

instruction and a dual-modality IDE plugin I developed. I measured participant learning via the 

SCS1 [98], which students took at the end of the course just before the final examination, as well 

as course examination questions, which I classified as either definitional / code reading or code 

writing [121]. The course covered all concepts tested by the SCS1 and course examinations. I 

also collected student responses to several surveys (Appendix F) throughout the intervention 

semester to help me understand the mechanisms behind any effects I might see. This included 

regular surveys during each module – weekly excepting exam and break weeks (Table 5-2) – as 

well as surveys and at the beginning, midpoint, and end of instruction, about student perceptions 

of blocks, text, and dual-modality instruction. Based on my hypothesis that dual-modality 

instruction and tools would help students better chunk and abstract sections of code, my 
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expectation was that students in the intervention group would score higher on exam questions 

and the SCS1 than those in the baseline group. 

As noted previously, many K-12 curricula focus on blocks-based environments; as such, 

many students in CS1 courses like UF’s have some prior experience in blocks-based 

programming environments. Students without experience could benefit from scaffolding, and 

students with only blocks-based experience needed to transition to programming in text, with all 

of the challenges and difficulties that entails. These students in particular stood to benefit from 

the representations provided by dual-modality programming environments, though I expected 

these environments to help students with prior experience as well. I hypothesized in Section 5.1 

that students in the intervention group would learn more about programming compared to those 

in the baseline group, and that differences between the groups would be most pronounced among 

those with no prior programming experience. 

Table 5-2. Module Survey Questions (Weekly) 
Q Prompt 
1 Did you program in “Blocks” mode since the end of your previous lab (including this lab)? 
2 Did you program in “Text” mode since the end of your previous lab (including this lab)? 
3 What was your primary mode since the end of your previous lab (including this lab)? 
4 Does instruction in dual blocks-text modes help you learn better? 
5 Why do you feel this way? 

 

5.5.1 Study Design 

This study used a quasi-experimental design with repeated measures and two groups. 

Both semesters used the same lecture and lab format. The first semester, Spring 2018, acting as a 

baseline group, was taught using traditional, text-based instruction; the second semester, Fall 

2018, acting as an intervention group, was taught using dual-modality instruction and the dual-

modality IDE plugin I developed for the study:  
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a) Students in the baseline group (n=248) were provided with standard development tools, 
including the IntelliJ IDEA, an Integrated Development Environment (IDE). All lecture 
slides and assignment descriptions used only text programming representations. 

b) Students in the intervention group were provided with IntelliJ IDEA and the Amphibian 
Dual-Modality IDE Plugin for Java I built, which presented text and blocks 
representations of the code they wrote and allowed them to move freely between 
representation modes. They were also instructed in the plugin’s use in lab sessions. 
66.7% of the course (8 of 12 topics) used blocks and text representations on assignment 
descriptions and lecture slides (Section 5.3). The remaining topics were not represented 
in the blocks construct models of the plugin (e.g., inheritance) or were non-programming 
topics (e.g., ethics and version baseline). 

 

In general, the topic ordering between the semesters was the same, but some topics were 

replaced as part of typical course content adjustment in preparation for later courses. In the 

baseline semester, introductory Data Structure and Generics were covered, while in the 

intervention semester, Algorithm Complexity and Propositional Logic were covered – none of 

which are facilitated by dual-modality instruction. 

During the first lab session, students in the intervention group completed a personal 

perception survey; as in middle school study, the questions were based on the work of Ericson 

and McKlin [39]. As in the middle school study, since Ericson and McKlin’s questions were 

general computing questions, I modified them to specifically address programming (Appendix 

G). Each week, students in the intervention group completed a short survey during their 

laboratory period as part of the course (Figure 5-7). The survey contained questions about 

student use of the blocks and text modes (“Did you program in ‘Blocks’ mode since the end of 

your previous lab?”) and perception of the effectiveness of the dual-modality instruction (“Does 

instruction in dual blocks-text modes help you learn better?”), along with a free response prompt 

(“Why do you feel this way?”). Students also completed three long-form perception surveys at 

the beginning, midpoint, and end of the course with five-point Likert-scale evaluations to 
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measure their comparative perceptions of blocks and text (e.g., “I think programming in blocks is 

easier than programming in text”). In addition, I collected logs from study participants via the 

Java dual-modality IDE plugin (detailed in Section 5.2), which tracked usage of blocks, mode 

switching, and time spent in each mode. Participants in all groups took the SCS1 at the end of the 

course 5-10 days before the final examination. I evaluated performance through a combination of 

scores on the SCS1 and score on course exams in terms of both overall scores as well as scores 

by question type. 

This study made use of lessons learned from my early work, especially my work with 

middle school students (Section 4.3), to improve upon study design. The CS1 population was 

composed primarily of students majoring in Computer Science and/or Engineering who are 

personally invested in and driven to learn the material (unlike some students in middle school 

study who found the technology courses uninteresting or boring). The population was also be 

much larger (n=673) – which should reduce statistical noise and improve statistical rigor. The 

study was over a longer time period (16 weeks instead of 5) and provided more time between 

class meetings, allowing time for students to learn / iterate on content and develop skills through 

practice. 

 
 

Figure 5-7. Gantt chart showing date ranges for surveys, examinations, and SCS1 assessment. 
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5.5.2 Participants 

This study’s data collection was classified as exempt by UF’s Institutional Review Board 

(IRB). However, I still asked students who completed the SCS1 and demographic survey to 

explicitly consent to having their scores and demographic data included in the study. No 

compensation was provided to participants, but students who completed the SCS1 and 

demographic survey received extra credit in the course. Students who did not participate were 

offered an alternative assignment to earn the same amount of extra credit in the course. Students 

who did not complete the SCS1 or demographic survey received the same instruction and in-

class programming assignments and took the same examinations, as these are part of ordinary 

classroom activity assigned by the instructor. In all, 58.1% of the baseline group (n=144) and 

59.1% (n=251) of the intervention group opted-in to the demographic survey, and their exam 

scores were included in my analysis. 

The COP3502 course is the first required course in the "Fundamentals of Programming” 

sequence at UF; as such, this class has a mix of students with some prior experience and those 

with none. Transfer students with programming coursework usually have CS1 waived as an 

equivalency via transfer credit. 36.8% (n=53) of students in the baseline group and 40.2% 

(n=101) in the intervention group had some prior programming experience; 19.9% (n=29) of the 

baseline and 22.1% (n=94) of the intervention groups had taken the AP Computer Science or AP 

Computer Science Principles courses in high school. 

Participants came primarily from the young college student age range (18-22) and 

represented diverse ethnic, racial, and gender backgrounds in both the baseline and intervention 

groups due to the course’s size and the university’s demographics (Table 5-3). While the 

populations are similar, there are some notable differences. There was a higher proportion of 
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men in the intervention group, and more intervention students indicated they were from white, 

Asian, or multiple racial backgrounds. 

Table 5-3. Demographic Groups by Condition 
Demographic Group Baseline Intervention 
Men 66.7%, n=96 74.9%, n=188 
Women 33.3%, n=48 25.1%, n=63 
Asian 27.8%, n=40 30.7%, n=77 
Black / African American 11.1%, n=16 5.2%, n=13 
Hispanic / Latino 20.8%, n=30 24.7%, n=62 
Native American 0.0%, n=0 0.4%, n=1 
Native Hawaiian / Pacific Islander 0.7%, n=1 0.4%, n=1 
White, Non-Hispanic / Latino 49.3%, n=71 52.6%, n=132 
Other 0.7%, n=1 1.6%, n=4 
Multiple 7.6%, n=11 15.5%, n=39 

 

5.5.3 Data Collection 

I collected several types of data for this study which varied by condition. Initially, data 

were collected along with contact information in order to facilitate follow-up interviews if 

needed. Personally identifying information had been collected in order to link participant 

responses to performance in the course during the study. Once this link had been created, the 

data set was anonymized by removing all identifying and contact information to protect the 

privacy of participants as much as possible. 

5.5.3.1 Examinations, assessments, and demographic surveys 

 I collected exam question scores from each participant via the university’s learning 

management system (LMS). These examinations were purely text-based in both semesters, using 

the same framework and modeled from exams in previous terms. The midterm exams – Exam 1 

and Exam 2 – were non-cumulative, and the Final Exam was cumulative. Exam 1 and Exam 2 

which were broken into two sections: a multiple choice / short answer section with definitional 

and code reading questions, and a free response pseudocode section requiring code writing. As is 

typical for this course, the Final Exam had only definitional and code reading questions; since 
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code writing questions require significant time for students to complete and instructors to grade, 

it is logistically difficult to fit a hand-scored, rubric-based cumulative examination into the 

allotted final exam blocks of two hours and also to have grading completed in time for grade 

submissions. 

I proctored the SCS1 at the end of the semester for both groups and recorded participant 

responses. In addition, I collected demographic data from participants at the end of the same 

computer-based survey. Participants completed the assessment and demographic questions in a 

dedicated room over a period of one-hour fifty-five minutes. The SCS1 was voluntary, so a 

subset of students opted to participate in this part of the study across the baseline and 

intervention semesters (58.7%, n=395). 

5.5.3.2 Perception surveys and usage logs 

I collected answers to Likert-scale perception survey questions in each course module 

(Appendix F), as well as download logs for online resources such as lecture slides. Additional 

surveys were given at the beginning, midpoint, and end of the semester. A secure server was also 

used to collect logs of how students used the plugin itself during the semester. 

5.5.3.3 Bias control 

In order to protect the integrity of data collection and prevent subconscious bias, neither 

I, as the principal investigator and instructor, nor my advisors, had access to information about 

who took or planned to take the SCS1 during either semester. Instead, this information was 

controlled by the teaching assistants until after final grade submission. Once I had submitted 

final grades for the course, the teaching assistants shared the assessment and participation data 

that were collected so that it could be analyzed. 
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5.6 Analysis Methods: Dual-Modality Instruction and Learning 

In this section, I describe the analysis methods I used to evaluate the data I collected, with 

the findings and discussion following in Chapter 6. 

To complete my dissertation work, I performed an analysis of the data collected in my 

final study via several methods, including analysis of student scores, survey responses, 

examination of student logs, coding of student responses, and review of instructor notes. This 

allowed me to identify differences in dependent variables, such as overall computer science 

knowledge and cognitive development level, according to independent variables – particularly 

instructional condition, demographics, and experience (Table 5-4). These analyses were then 

used to draw conclusions about how student knowledge differed between conditions (RQ1 & 

RQ2) and student / instructor perceptions of the classroom experience (RQ3). 

Analyses considered independent variables (Table 5-5) including instructional condition 

(intervention / baseline), prior experience, and type of prior experience. Specifically, prior 

experience was categorized as text-only, blocks (which may include some text experience), and 

none. 

Table 5-4. Measures by Research Question 
Research Question Independent Dependent 
RQ1 – Knowledge / Condition Instructional Condition 

Demographics 
Overall Knowledge 
Material Use 
Instruction Perception 

RQ2 – Prior Experience Instructional Condition 
Type of Prior Experience 
Demographics 

Overall Knowledge 
Material Use 
Instruction Perception 

RQ3 – Perceptions of Experience Type of Prior Experience 
Demographics 

Material Use 
Instruction Perception 
Blocks & Text Perceptions 
Instructor Perceptions 
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Table 5-5. Independent Variables 
Measure Instrument 
Prior Experience Type Background Survey 
Demographics (Gender, Age, & Ethnicity) Background Survey 
Instructional Condition (Intervention/ Baseline) None 

 

5.6.1 Examinations and Assessments 

To investigate student learning, I investigated scoring on course exam questions and the 

SCS1. I broke down my analysis according to question type, which I also associate with the Neo-

Piagetian stages of development. This section focuses on the examination and assessment data 

and what it reveals about student learning of programming between these two different 

conditions. 

5.6.1.1 Hypotheses & expectations 

Examination and assessment scores were used to evaluate programming ability and 

cognitive level in the Neo-Piagetian framework, which I used as the primary measures to identify 

patterns in differences between the intervention and baseline conditions (Table 5-6). My 

hypothesis was that dual-modality programming environments would help students develop the 

ability to use abstraction and chunking, so I expected students to perform better on questions that 

make use of them. Code reading and writing depend on chunking and abstraction and are 

associated with concrete- and formal-operational reasoning [71, 32]. As such, within the 

intervention group, and compared to the baseline group, I expected students would show higher 

performance on code completion and tracing questions on the SCS1 and reading and writing 

questions on course exams, which would suggest that they had developed expertise in chunking 

and abstraction, and by extension had reached the concrete-operational stage of cognitive 

development in the Neo-Piagetian framework. However, I believed the intervention was unlikely 

to play a role in performance of tasks that depended on preoperational skill sets (those without 
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abstractions). Definitional questions depend on understanding of construct function, but not 

abstraction or chunking; as a result, performance on such questions would not be significantly 

impacted by the hypothesized advantage granted to abstraction-based questions by dual-modality 

programming environments. As a result, I anticipated that students would score about the same 

on definitional questions. 

As with the analysis of conditions, my exploration of how prior experience and dual-

modality instruction interact used the examination scores when drawing conclusions. I explored 

the interaction of prior programming experience type – text only, blocks, and none – and 

condition with respect to assessment performance. I had hypothesized that, among students in the 

intervention group, students with no experience would see the greatest positive difference in 

knowledge compared to those in the baseline group, followed by students with blocks experience 

(Table 5-7). I expected students with text experience to show the smallest differences in scoring 

between conditions. 

Table 5-6. RQ1 – Dual-Modality Instruction and Question Performance - Hypothesis 
Question Type Intervention Baseline 
SCS1: Definitional No difference No difference 
SCS1: Tracing Higher than Baseline Lower than Intervention 
SCS1: Code Completion Higher than Baseline Lower than Intervention 
Course Exams: Definitional / Reading Higher than Baseline Lower than Intervention 
Course Exams: Writing Higher than Baseline Lower than Intervention 

 

Table 5-7. RQ2 - Dual-Modality Instruction vs. Text Instruction by Experience - Hypothesis 
Question Type No Experience Blocks Experience Text-Only Experience 
SCS1: Definitional No change No change No change 
SCS1: Tracing Much Higher Somewhat Higher Slightly Higher 
SCS1: Code Completion Much Higher Somewhat Higher Slightly Higher 
Course Exams: Def. / Reading Much Higher Somewhat Higher Slightly Higher 
Course Exams: Writing Much Higher Somewhat Higher Slightly Higher 
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5.6.1.2 SCS1 assessment questions 

We collected student responses on the SCS1 assessment in order to compare student 

performance in the baseline and intervention semesters. Students in both semesters were offered 

the option to sit for the SCS1 assessment at the end of the semester for extra credit. All students 

in both conditions took the same assessment, whose questions are categorized by type into 

definitional, tracing, and code completion questions [98]. I computed overall scores on the SCS1 

as well as scores by question type. 

5.6.1.3 Course examination questions 

In order to contrast code reading and code writing skills, we also collected student 

responses and grades from course examinations. Midterm Exam 1 and Exam 2 had two sections 

each – one with code reading and definitional questions (Figure 5-8) and another with a code 

writing question (Figure 5-9) – while the Final Exam had only definitional and code reading 

questions due to logistical limitations and grade deadlines. 

 
 

Figure 5-8. Definitional (left) and code reading (right) question samples from Exam 1. 
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Figure 5-9. Code writing question from Exam 1 (abbreviated). 

 
For the course exam definitional and code reading questions, not all question topics and 

formats appeared across semesters due to exam date variation. To eliminate these differences as 

a confounding factor, I identified a subset of questions for Exam 1, Exam 2, and the Final Exam 

that were in common across semesters (Table 5-8). While Exam 1 and the Final Exam had nearly 

or exactly the same number of questions, Exam 2 differed in length: the baseline group’s exam 

was shorter. For Exam 1, 10 of 16 (62.5%) questions from the baseline semester overlapped with 

10 of 15 (66.7%) questions from the intervention semester, while for Exam 2, 5 of 10 (50%) 

questions in the baseline overlapped with 5 of 16 (33.3%) in the intervention term. Finally, on 

the Final Exam, 11 of 16 (68.8%) questions overlapped between the exams. 

Table 5-8. List of Topics in Common by Exam 
Midterm 1 Midterm 2 Final 
Instructions Classes Instructions 
Arithmetic Encapsulation Arithmetic 
Selection Overloading Data Types 
Data Types Inheritance Functions 
Functions Overriding Arrays 
Arrays  Loops 
References  Versioning 
  Data Streams 
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The code writing exam section questions were isomorphic variants of one another 

between semesters; that is, they required employing the same skills and tested the same concepts. 

For example, on the first midterm in both classes, the code writing section required students to 

write and invoke simple methods and engage in console I/O. By the same token, on the second 

midterm for both classes, the writing section required writing and extending classes, overloading, 

and overriding. As such, I was able to directly compare the results. As with the definitional / 

code reading section, I calculated percentage scores for each exam before comparison. 

5.6.1.4 Analysis tests 

Once I had collected the scores from all of the exams and assessments for overlapping 

questions, I compared the scores in the baseline group to those in the intervention group. As the 

scores did not follow a normal distribution, I employed the non-parametric two-tailed Mann-

Whitney U test [93] to compare the groups. Further, I calculated the eta-squared (η2) value to 

identify the effect size and report it with my findings. 

In order to identify interactions between students with different prior experience levels – 

those who have worked previously only in text, those who have worked in blocks, and those with 

no prior experience – I used Aligned Rank Transform (ART) [137] to transform the data and 

make it suitable for use with ANOVA. When interactions were significant, I also performed 

interaction contrasts to identify differences in scoring by condition dependent on differences in 

experience [79]. 

5.6.2 Surveys, logs, and notes 

In this study, I used several measures to collect sets of qualitative and quantitative data 

via surveys (Table 5-9). These included Binary, Likert, and Free Response questions. In this 

section I describe the methods I used to analyze these data sets. 
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Table 5-9. Dependent Variables 
Measure Instrument Data Collected Analysis 
Material Use Plugin Logs 

Canvas Logs 
Sessions 
Frequency of Use 

Time Series 
Time Series 

Instruction Perception Module Survey  
 
Mid-Post Survey 
 

Binary Response 
Free Response 
Likert Response 
Free Response 

Time Series 
Codes 
ANOVA 
Codes 

Blocks & Text Perceptions Pre-Mid-Post Surveys Likert Response 
Free Response 

ANOVA 
Codes 

Instructor Perceptions Notes Text Review 
 

5.6.2.1 Qualitative data 

I collected qualitative data from survey answers to free response prompts. Of the 252 

students who completed the demographic survey, I qualitatively coded responses from these 

prompts for a sample of 63 (25.0%) students. I selected these students to maximize coverage of 

ethno-racial, age, educational level, gender, demographic and experience groups. I coded the 

responses in modules 1, 3, 4, 7, and 11. Modules 1 and 11 were included as they are the first and 

last module surveys, respectively; 3 and 4 were selected because they cover programming 

fundamentals (loops, data types, and functions) just before Exam 1; and I coded module 7 as it 

covered the period in which I changed the instructional approach from dual-mode to text-only 

instruction. I completed the coding in a four-step process. In the first step, to establish an initial 

set of codes for the responses, I used the qualitative coding approach described by Auerbach and 

Silverstein to develop a list of repeating ideas and refine them via iteration [4]. In the second 

step, two other researchers and I independently coded responses from three participants and 

discussed disagreements in order to refine the codebook. We adjusted some codes based on the 

discussion, and we also combined codes we determined overlapped significantly. In the third 

step, the other researchers and I coded an additional 8% of the samples, which I used to perform 

an inter-rater reliability analysis using Fleiss kappa [47]. Finally, in the fourth step, I coded the 
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remaining samples to complete the data set. The average agreement between coders was Fleiss 

kappa = 0.601, which is characterized as moderate agreement [128] . 

5.6.2.2 Quantitative data 

I collected quantitative data from several measures, including Likert and binary responses 

to survey questions, and logs from the plugin and Canvas. Likert scores were analyzed via 

ANOVA [44] to identify differences between the baseline and intervention groups. I plotted 

responses to module (weekly) questions about material use, perceptions of dual-modality 

instruction, and plugin and Canvas logs by module in a time series so that they could be 

compared time-wise for triangulation [22]. 

5.6.2.3 Surveys 

Survey responses were used to provide insight into student perceptions and the 

relationship between the condition of instruction and the overall classroom experience of 

students. I analyzed module surveys to elicit patterns in student perceptions of dual-modality 

instruction. For module surveys, I examined responses to detect differences in perceptions over 

time and also considered them in the context of differences in usage patterns for the dual-

modality IDE plugin and materials. 

5.6.2.4 Usage logs 

Plugin and Canvas resource logs were examined to identify trends in student use of 

scaffolding. Plugin logs were evaluated to identify programming sessions, while Canvas resource 

logs were examined to determine frequency of use. I sought to identify how often students used 

the dual-modality IDE plugin and materials in order to more clearly link the dual-modality 

programming environments to differences in knowledge, cognitive level, and perceptions. I also 

explored how often students switched between blocks and text. I examined logs in segments by 

module to help me identify changes that occurred over the course of the term. 
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To identify usage of lecture slides on Canvas, I identified a two-week timeframe for each 

set of slides that covered the introduction, conclusion, and first quiz or exam covering the topic 

(Table 5-10). If access to the slide set occurred within this coverage window, I marked the slides 

for that module as having been used by the student for the purposes of this analysis. For plugin 

usage, I identified a window covering the beginning of the module to the end of the module 

(corresponding to the beginning of the next module – Table 5-11), and if the plugin was used in 

that time window for interactive events (such as using blocks or switching modes), the plugin 

was marked as being used by the student. Interactive plugin events were grouped into the 

categories of “Block Use”, “Palette Viewing”, and “Mode Switching” for the analysis (Appendix 

K). Palette Viewing actions were those in which the student selected a category of blocks to 

view (such as “Control”, “Classes”, or “Variables”); Mode Swapping was logged whenever a 

student switched from blocks to text mode or vice versa; and Block Use actions are those in 

which a student selected (dragged) a programming block and/or placed (dropped) a block within 

the program window. For each module, I then calculated the percentage of students who used the 

lecture slides and plugins. I also calculated the average percentage of students using the lecture 

slides and plugin over all module time windows. 

Table 5-10. Time Window for Lecture Slide Usage by Module 
Module Date Range 
0 2018/08/22 – 2018/09/04 
1 2018/08/29 – 2018/09/11 
2 2018/09/05 – 2018/09/18 
3 2018/09/12 – 2018/09/25 
4 2018/09/19 – 2018/10/02 
5 2018/10/03 – 2018/10/16 
6 2018/10/10 – 2018/10/23 
7 2018/10/17 – 2018/10/30 
8 2018/10/24 – 2018/11/06 
9 2018/11/07 – 2018/11/20 
10 2018/11/14 – 2018/11/27 
11 2018/11/28 – 2018/12/11 
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Table 5-11. Time Window for Plugin Usage by Module 
Module Date Range 
0 2018/08/22 – 2018/08/28 
1 2018/08/29 – 2018/09/04 
2 2018/09/05 – 2018/09/11 
3 2018/09/12 – 2018/09/18 
4 2018/09/19 – 2018/10/02 
5 2018/10/03 – 2018/10/09 
6 2018/10/10 – 2018/10/16 
7 2018/10/17 – 2018/10/23 
8 2018/10/24 – 2018/11/06 
9 2018/11/07 – 2018/11/13 
10 2018/11/14 – 2018/11/27 
11 2018/11/28 – 2018/12/11 

 

5.6.2.5 Instructor notes 

Instructor notes were used to provide insight into the instructor’s (i.e., my) perspective of 

the classroom experience when using dual-modality instruction. These notes helped establish 

relationships between instructor observations and student experience. 

5.6. 3 Summary 

Through analysis of the study data, I attempted to answer questions regarding dual-

modality instruction (intervention) and its connection to student learning and perceptions as 

compared to text-based instruction (baseline). In addition to examining the overall connection 

between the instructional approach a student knowledge, I also examined the role prior 

experience plays – including the differences between prior experience in blocks and text-only 

programming. When analyzing results, I examined student use of the dual-modality IDE plugin 

and materials to verify that students did indeed make use of them. Finally, I examined the impact 

of using dual-modality tools and curricula on the classroom experience and detailed student and 

instructor perceptions, including receptiveness, perception of effectiveness, and appropriateness 

for various programming topics. In Chapter 6, I discuss the findings of these analyses and 

discuss their implications. 
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CHAPTER 6 
LEARNING & DUAL-MODALITY INSTRUCTION: FINDINGS & DISCUSSION 

In this chapter I describe the findings of my study on the use of dual-modality instruction 

in UF’s CS1 course. This chapter is organized in parts by research question. Section 6.1 

describes the findings and implications of RQ1, in which I compare the performance differences 

between students in the baseline (traditional, text-based instruction) and intervention (dual-

modality instruction) semesters. Section 6.2 describes the findings and implications of RQ2, in 

which I examined connections between prior programming experience and instructional 

condition (traditional, text-based vs dual-modality instruction). Section 6.3 describes the findings 

and implications of RQ3, which is focused on student and instructor perceptions when utilizing 

dual-modality instruction. Finally, Section 6.4 summarizes my findings from the research study. 

6.1 Performance Comparison in Dual-Modality vs Text Instruction 

To answer my first research question (RQ1) – “How do students perform in code reading 

and writing after learning with dual-modality instruction, as compared to students learning with 

traditional (text-based) approaches to instruction in CS1 courses?” – I compared student 

performance on exams and assessments. This included midterm Exam 1, midterm Exam 2, and 

the Final Exam, as well as the SCS1 assessment taken at the end of the semester. In this section I 

outline my findings for each examination and assessment. 

6.1.1 Course Exam Results 

I evaluated student performance on the course exams according to exam section question 

types (i.e., definitional / reading or writing). I used the Mann-Whitney U Test to analyze the 

exam scores due to their non-normal distribution. Course midterm exams were divided into two 

sections – one section included code reading and definitional questions (Section 5.6.1), while the 
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other section had code writing questions. The Final Exam had only code reading and definitional 

questions. In this section I examine these sections individually. 

6.1.1.1 Code reading & definitional questions 

For the code reading / definitional sections, I compared questions on topics shared 

between the exams (e.g., Arithmetic, Data Types, and Classes – see Table 5-8). On these 

questions, students in the intervention group, which learned via dual-modality instruction, scored 

higher on both midterm exams than the baseline group, which learned via text instruction, and 

the difference between the groups on both exams was statistically significant (α=0.05). On Exam 

1, the intervention average (μintervention=85.4%) was higher than the baseline average 

(μbaseline=58.3%) with a large effect (, and once more the result was significant (α=0.05) when 

comparing the groups (Z=-4.1, p<.001, η2=0.03). In summary, the students in the intervention 

group outperformed the students in the baseline group in every code reading / definitional section 

of the course exams (Table 6-1). I discuss these findings further in Section 6.1.3. 

6.1.1.2 Code writing questions 

The code writing sections of the exams tested the same content across semesters, with the 

intervention semester using isomorphic variants of questions from the baseline semester. In these 

sections, I saw significant differences between the conditions on Exam 1, but on Exam 2 I did 

not. For Exam 1, students in the intervention group (μintervention=76.1%) scored significantly 

higher (α=0.05) than those in the baseline group (μbaseline=68.9%) with a small-to-medium effect 

size (Z=-4.3, p<.001, η2=0.03), while for Exam 2, means were not statistically different 

(μbaseline=68.0%, μintervention=68.7%, Z=-0.2, p=.826, η2=0.00). In short, the intervention group 

outperformed the baseline group on the code-writing section of Exam 1, taken earlier in the 

semester, but not on the code-writing section of Exam 2, taken later in the semester (Table 6-1). 
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Table 6-1. Results Summary for Course Exams (Scores as Percent) 
Questions Baseline μ, σ Intervention μ, σ P-val. Z η2 
Exam 1 – Def. & Reading 58.3, 17.3 85.4, 13.9 <.001 -16.4 0.41 
Exam 1 - Writing 68.9, 25.0 76.1, 24.4 <.001 -4.3 0.03 
Exam 2 – Def. & Reading 72.7, 19.8 76.4, 18.6 <.001 -2.8 0.01 
Exam 2 - Writing 68.0, 29.5 68.7, 25.8 0.826 -0.2 0.00 
Final Exam 65.8, 18.3 72.0, 15.5 <.001 -4.1 0.03 

 

6.1.2 SCS1 Results 

To compare the results on the SCS1 assessment across the intervention and baseline 

conditions, I used the Mann-Whitney U Test as the scores did not follow a normal distribution. 

The results from the SCS1 assessment did not differ significantly between the baseline group, 

who learned via text instruction, and the intervention group, who learned via dual-modality 

instruction (Table 6-2). In other words, there was no meaningful difference in the scores of the 

baseline and intervention group on the overall SCS1 score, despite the baseline students scoring 

1.5% higher than the intervention group. There was also not meaningful difference by question 

type. This may be related to the attributes of the specific SCS1 questions (e.g., discrimination 

factor and difficulty), which I discuss in Section 6.1.3. 

Table 6-2. Results Summary for SCS1 (Scores as Percent) 
Questions Baseline μ, σ Intervention μ, σ P-val. Z η2 
SCS1 - All 51.6, 18.9 50.1, 18.0 0.46 -0.7 0.00 
SCS1 – Definitional 58.8, 19.4 57.5, 20.1 0.64 -0.5 0.00 
SCS1 – Tracing 52.1, 21.2 49.9, 21.4 0.25 -1.2 0.00 
SCS1 – Completion 43.8, 26.1 43.0, 23.3 0.79 -0.3 0.00 

 

6.1.3 Performance Comparison Discussion 

I had hypothesized that students would learn more effectively under dual-modality 

instruction, as it supports and scaffolds student learning of abstraction and chunking. As 

abstraction and chunking are critical to later stages of cognitive development [71], I believed 

students would score higher on exams and assessments in the dual-modality instructional 
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condition. My results show that students in the intervention group outperformed students in the 

baseline group on questions dependent on concrete- and formal-operational reasoning for most 

course exam sections, but not on the SCS1. In this section I detail these results by assessment, 

exam, and section. 

6.1.3.1 Course Exam performance comparison discussion 

When I compared scores from questions covering shared topics across semesters on in-

class examinations, scores between the groups differed significantly on both the definitional / 

code reading section and writing section of Exam 1. All topics from Exam 1 (Section 5.6) were 

covered using dual-modality instruction. As such, I expected students in the intervention to 

outperform students in the baseline group, and that is what I found for both the definitional / 

code reading as well as the code writing sections of the exam. 

On Exam 2 and the Final Exam, the intervention group outperformed the baseline group 

on the definitional / code reading sections, though to a lesser degree than on Exam 1. It is notable 

that the definitional / code reading sections of both Exam 2 and the Final Exam included a mix of 

topics covered in dual blocks-text instruction (using dual-modality representations) and pure-text 

instruction (using only text representations). As such, I would expect to see less of a difference 

between the groups in these sections. In line with these expectations, compared to Exam 1, the 

average scores on Exam 2’s and the Final Exam’s definitional / code reading sections were 

closer between the baseline and intervention groups, though the differences were still statistically 

significant. Further, Exam 2’s definitional / code reading section had fewer questions in the 

baseline semester, but the exam was given in the same amount of time, giving baseline students 

more time per question. Despite this advantage, students in the intervention semester scored 

higher than students in the baseline semester. 
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By comparison, there was not a significant difference on the code writing section of 

Exam 2. The topic of the code writing section of Exam 2 was inheritance; this topic was not 

covered by the dual-modality instruction and instead was taught exclusively in text, because it 

was necessary to transition students entirely to text before the end of the course. For this reason, 

I did not develop visualizations for inheritance relationships in Droplet. In other words, for those 

exam sections which included topics covered exclusively in text instruction, there was not a 

difference in scores. 

In summary, considering the exams over time, a consistent pattern emerges. Students in 

the intervention group outperformed those in the baseline group on every section of every exam 

that incorporated content that was covered in the dual-modality instruction; only Exam 2’s code 

writing section, which exclusively covered material that only used text-mode instruction, did not 

show significant differences in scores. In addition, the performance differences extended through 

to the Final Exam, which covered topics from Exam 1 and Exam 2. These differences were not 

limited to the time period of the dual-modality instruction but persisted to the end of the course, 

even after the change to text-only instruction. In other words, in line with my hypothesis, when 

tested on topics covered by dual modality instruction, students scored better in the intervention 

than the baseline; when I tested on topics covered exclusively in text, the students in the two 

conditions scored about the same as one another.  This suggests that the concepts covered in 

dual-modality instruction were clearly anchored in students' minds, and as a result, they retained 

this knowledge through to the end of the course. 

When comparing scores between the baseline and intervention groups, it is useful to do 

so within the Neo-Piagetian framework for novice programmers [71]. This allows us to review 

my results in terms of cognitive stages of development. Students can trace and write simple, 



 

124 

individual lines of code at the pre-operational level. However, reading and writing multi-line, 

complex blocks of code – such as those present in the course exams – is tied to students’ abilities 

to recall and apply chunks [113, 45] and engage in higher-level reasoning (e.g., abstraction) [73]. 

This reasoning about abstract meaning is in line with the Neo-Piagetian framework’s concrete-

operational stage (applying abstractions to familiar situations) and formal operational stage 

(applying abstractions to unfamiliar situations). On the reading and writing sections of the 

exams, the students in the intervention scored higher than those in the baseline group. Thus, I 

concluded that students in the intervention group were more often functioning at the concrete and 

formal operational reasoning stages when compared to the baseline group. 

6.1.3.2 SCS1 performance comparison discussion 

In my study, I found that the SCS1 did not help distinguish between the baseline and 

intervention group – as both groups scored near 50% – despite the large sample size. As a result, 

the SCS1 data did not help me evaluate whether student learning was different in the baseline 

and intervention group. The authors of the SCS1 determined in their work that the SCS1 

questions overwhelmingly skewed to hard levels of difficulty, and most questions they classified 

as fair, but not good, in their effectiveness at discriminating between students of different ability 

levels [98]. Thus, in my study, the lack of difference in and general low value of the scores on 

the SCS1 between the baseline and intervention groups may be due in part to the SCS1’s 

difficulty and limited capacity to discriminate between students of different ability levels.  

The results on the SCS1 contrast with my findings on the course exams. In particular, I 

had anticipated that the subset of questions identified as “code-completion” questions by the 

assessment’s authors [98] would align with the code writing sections of the exams, but they did 

not. This may be due in part to the fact that, while the code completion questions on the SCS1 

are multiple choice and scored as either “right” or “wrong”, the course exam questions were free 
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response pseudocode questions. These free response questions were graded with a rubric to 

award partial credit, capturing more nuance in scores regarding student understanding. In 

addition, the course exam questions were developed to address the specific topics covered in the 

course, including some topics that were not covered by the SCS1 (e.g., object-oriented 

programming), though all SCS1 topics were covered in the course. 

6.1.4 Performance Comparison Summary 

In this study, I investigated student learning and dual-modality instruction using course 

examinations and the SCS1 assessment. I had expected to see differences in groups through both 

the course exams and SCS1. My analysis showed differences between the intervention and 

baseline groups in the course exams, but not the SCS1. When considering the course exams, 

students in the intervention group outperformed those in the baseline group on every section of 

every exam that incorporated content that was covered in the dual-modality instruction. These 

questions involved code reading and code writing. Code reading and writing are built on the 

ability to recall patterns via chunking and engage in abstraction; these skills are central to the 

later stages of cognitive development in the Neo-Piagetian framework – namely, concrete 

operational reasoning and formal operational reasoning. However, as noted, I did not see 

differences in the SCS1 assessments; this may be related to the SCS1’s shortcomings in 

discrimination ability and high difficulty, as noted by the SCS1’s authors, as well as differences 

in topic coverage and free response question grading in the course exams versus the exclusively 

multiple-choice approach of the SCS1. Thus, the SCS1 may not yield a complete picture of the 

knowledge and abilities of the students in this particular course. 

This work has important implications regarding student learning in early course science 

courses such as a typical CS1 course. Prior work by Corney et al [32] found that most students 

who complete a typical CS1 course are at the preoperational or early concrete operational stages; 
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as Corney et al point out, those students at the preoperational stages are “woefully under-

prepared” for traditional programming assignments – those which students are likely to 

encounter increasingly in coursework. The higher performance among students in the 

intervention group compared to the baseline group on questions focused on skills fundamental to 

these later Neo-Piagetian stages suggests that dual-modality instruction may help students 

progress beyond the preoperational stage and master concrete-operational thinking, thus 

preparing them for programming tasks they are likely to see in advanced courses and the 

industry. 

The results on the SCS1 also merit consideration. Based on the results from this study, as 

well as the evaluations of the authors of the SCS1, there are limitations to the SCS1 (e.g., 

difficulty, discrimination, and binary responses). As a result, the SCS1 may not be well-suited 

for some populations of students. I discuss these in further detail in Section 6.2.3. 

6.2 Performance Comparison by Prior Experience 

My second research question (RQ2) focused on the relationship between instructional 

condition and prior programming experience: “How does prior programming experience affect 

students learning in dual-modality instruction as compared to students learning in traditional 

(text-based) approaches to instruction in CS1 courses?” To explore the relationship between 

prior experience and instructional condition, I analyzed the interaction between course 

examination section (code definition / reading and code writing) and the SCS1 assessment scores 

and type of prior experience – text only, blocks, or none. In this section I outline my findings 

among these interactions. 

6.2.1 Course Exam Results 

I analyzed the exam sections (code definition / reading and code writing) separately when 

investigating interactions between the instructional condition and prior programming experience. 
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I expected to see differences between reading and writing questions, which depend on more 

advanced skills (e.g., chunking, recall, and abstraction) associated with later cognitive 

development states (e.g., concrete- and formal-operational reasoning). To identify the interaction 

between condition and type of prior experience, I used Aligned Rank Transform (ART) [137] to 

transform the non-parametric data into suitable form for use with ANOVA and performed 

interaction contrasts. In this section I describe these results. 

6.2.1.1 Code reading / definitional questions 

For the questions on topics shared between midterm exams (i.e., Exam 1 and Exam 2) 

that focused on definitions and code reading, there was no significant interaction between the 

instructional condition and type of prior experience (e.g., text-only, blocks, or none) with respect 

to the exam scores (Table 6-3). However, on the Final Exam, which was composed of only code 

reading and definitional questions, I found an interaction between prior experience type and 

condition with respect to exam score on question topics shared between the baseline and 

intervention semesters  (F2,360=4.4, p=.013, η2=0.02) (Table 6-3). In particular, there were 

differences between students with no prior experience and those with prior experience 

between conditions (Table 6-4, Figure 6-1): 

• Students with prior text-only experience scored higher in the intervention (μ=79.2, 
σ=13.2) than those in the baseline (μ=66.5, σ=16.7) (p<0.001); 

• Students with prior blocks experience scored higher in the intervention (μ=74.8, σ=13.9) 
than those in the baseline (μ=58.8, σ=17.4) (p<0.001); 

• Students with no experience scored similarly between the conditions; and 

• There was no significant difference between students with blocks and text experience 
between conditions. 
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In other words, on the Final Exam, students with prior experience – whether blocks or 

text – scored higher in the intervention group than the baseline group. However, among those 

with no prior experience, the scores were about the same in the two condition groups. 

Table 6-3. Course Exam Interactions: Condition x Experience 
Questions F2,360 P-val. η2 
E1 – Definitional & Reading 1.9 0.138 0.01 
E1 - Writing 5.7 0.003 0.03 
E2 – Definitional & Reading 1.0 0.362 0.01 
E2 - Writing 3.8 0.023 0.02 
Final Exam 4.4 0.013 0.02 

 

Table 6-4. Mean & Standard Deviation, Final Exam: Condition x Experience 
 Baseline Intervention 
Prior Experience Mean (μ) Std. Dev. (σ) Mean (μ) Std. Dev. (σ) 
None 66.4 17.4 69.1 16.6 
Blocks 58.8 17.4 74.8 13.9 
Text-Only 66.5 16.7 79.2 13.2 

 

 
 

Figure 6-1. Boxplot of Final Exam scores by condition and prior programming experience. 
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6.2.1.2 Code writing questions 

On the writing sections of both midterm examinations, the interaction between prior 

experience types and condition with respect to exam score was significant, even when a main 

effect was not present (Table 6-3, Appendix J) – that is, even when overall I did not see a 

difference between the condition groups, when I examined performance broken out by the 

students’ prior experience (text-only, blocks, or none), there were differences. 

For Exam 1’s code writing section, on which there was a main effect of the condition 

overall, the interaction between condition and prior experience was significant (F2,360=5.7, 

p=.004, η2=0.03) (Figure 6-2). The difference between conditions among students with only 

prior text experience was significantly different than the difference between conditions among 

students with blocks experience (p=.012). Likewise, the difference between conditions among 

students with only prior text experience was significantly different than the difference between 

conditions among students with prior experience (p=.012). 

Specifically, there were differences between students with text-only experience and 

those with no experience or experience in blocks between conditions (Table 6-5, Figure 6-2): 

• Students with prior text-only experience scored higher in the intervention (μ=89.2, 
σ=15.0) than those in the baseline (μ=70.6, σ=23.6) (p<0.001); 

• Students with prior blocks experience scored similarly between conditions; 

• Students with no experience scored similarly between the conditions; and 

• There was no significant difference between students with no experience and those with 
blocks experience between conditions. 

 

In summary, the students with only prior text experience performed better in the 

intervention group on Exam 1’s code writing section, but there were no differences between the 

conditions for students with blocks experience, nor for those with no experience. 
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Table 6-5. Mean & Std. Deviation, Exam 1, Writing: Condition x Experience 
 Baseline Intervention 
Prior Experience Mean (μ) Std. Dev. (σ) Mean (μ) Std. Dev. (σ) 
None 60.7 22.8 60.8 25.9 
Blocks 79.7 29.6 84.6 17.5 
Text-Only 70.6 23.6 89.2 15.0 

 

 
 

Figure 6-2. Boxplot of Exam 1 writing scores by condition and prior programming experience. 

 
While analysis of Exam 2’s code writing section did not exhibit significance overall with 

respect to condition, there was nevertheless a significant interaction between condition and prior 

experience with respect to exam score (F2,360=3.8, p=.023, η2=0.02) (Figure 6-3). There were 

differences between students with only prior text experience and those with no prior experience 

(p=.021). Additionally, students with no prior experience did slightly worse in the intervention 

group compared to the baseline group (Table 6-6): 

• Students with prior text-only experience scored similarly between conditions; 

• Students with prior blocks experience scored similarly between conditions; 
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• Students with no experience scored slightly worse in the intervention (μ=58.1, σ=25.9) 
than in those in the baseline (μ=67.6, σ=27.2) (p=0.023); and 

• There was no significant difference between students with blocks experience and text-
only experience between conditions. 

 

In short, the students with prior experience – blocks and/or text – performed about the 

same in the intervention and baseline groups on Exam 2’s code writing section, but students with 

no prior experience performed more poorly. 

Table 6-6. Mean & Std. Deviation, Exam 2, Writing: Condition x Experience 
 Baseline Intervention 
Prior Experience Mean (μ) Std. Dev. (σ) Mean (μ) Std. Dev. (σ) 
None 67.6 27.2 58.1 25.9 
Blocks 74.4 24.5 74.9 22.6 
Text-Only 69.5 30.5 78.5 18.8 

 

 
 

Figure 6-3. Boxplot of Exam 2 writing scores by condition and prior programming experience. 
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6.2.2 SCS1 Results 

To identify interactions between condition and type of prior experience on the SCS1, I 

used Aligned Rank Transform (ART) [137] to transform the data and then performed interaction 

contrasts. There was no significant interaction between the instructional condition and type of 

prior experience with respect to the results from the SCS1 assessment (Table 6-7, Appendix J), 

mirroring the results I found when examining the main effect between the intervention and 

baseline conditions. This was true on the over assessment scores, as well as scores I computed by 

question type (definitional, tracing, and code completion) on the SCS1. In other words, I did not 

find any difference between students with different types of prior programming experience on 

the SCS1 assessment. 

Table 6-7. SCS1 Interactions: Condition x Experience (See Appendix J for Means / Std. Dev.) 
Questions F2,360 P-val. 
SCS1 - All 1.8 0.170 
SCS1 – Definitional 0.4 0.683 
SCS1 – Tracing 0.3 0.707 
SCS1 – Completion 2.3 0.100 

 

6.2.3 Prior Experience Discussion 

I hypothesized that those students with no prior experience would have the most to gain 

from the scaffolding and cognitive support provided by dual-modality programming 

environments (e.g., construct visualization and association of blocks with text syntax), as they 

would have limited mental models of programming constructs and algorithms; in other words, 

those with no experience would be at the sensorimotor stage in the Neo-Piagetian Framework for 

novice programmers [71]. On the other hand, I had hypothesized that those with prior text 

experience would stand to gain the least, as prior to taking the class, they would already have 

established mental models of text-based constructs which they could depend on and recall – they 
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would be more likely to be at the concrete-operational or formal operational stages of the Neo-

Piagetian framework. 

While those in the intervention group overall scored higher on most exams than those in 

the baseline group, I most consistently saw significant differences among those with prior text 

experience, and least among those with no experience.  This is a contradiction of my hypothesis: 

I had expected students with less experience to gain the most from the intervention, and that 

those with the most experience would benefit the least. I now believe that the students with prior 

experience performed higher in the intervention because of reinforcement of existing mental 

models which helped students with prior experience move from concrete-operational to formal 

operational stages of expertise. In this section, I will discuss the implications of my findings on 

the interaction of prior experience type and condition. 

6.2.3.1 Course exam discussion 

While those in the intervention group scored significantly higher than those in the 

baseline group overall, I saw greater and more frequent differences between the students with 

prior text experience when comparing the baseline and intervention conditions than those 

students with no prior experience or experience in blocks. This was contrary to my hypothesis 

that those with the least experience would show the greatest positive difference between the 

intervention and baseline group – i.e., that those students with the least prior experience in the 

intervention group would outperform those in the baseline group by the greatest margin. I saw 

higher performance differences among those with text experience on the written portion of both 

midterm examinations (Exam 1 and Exam 2) and the final examination (Final Exam). In other 

words, while student scores overall were higher on most examinations in the intervention group 

compared to the baseline group, the difference was most stark among those with prior text 

experience. While I had hypothesized that students with no experience in the intervention would 
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outperform those in the baseline, on the writing sections and final examination, their differences 

compared to the baseline group were smaller than those with prior programming experience. 

Additionally, I had previously hypothesized that there would be difference on code reading 

sections of the exams, but there was no significant interaction on the definitional and code 

reading sections of the midterm examinations. 

Perhaps as one might expect, students with no prior experience lagged behind those with 

experience on the Final Exam, but at the same level in the baseline and intervention. However, 

my analysis provides evidence that suggests students with prior blocks experience performed on 

about the same level as those students with text-only experience at the Final Exam in the 

intervention, and better than those in the baseline. This suggests that dual-modality instruction 

may provide students support in reaching the same levels of expertise as those who learn 

exclusively in text by the end of a CS1 course. This also suggests that dual-modality instruction 

may be a viable instructional approach. 

On Exam 1’s code writing section, students with text-only experience performed better in 

the intervention. With respect to these differences, it is prudent to consider the expertise level of 

these students, their cognitive level, and how it might impact learning. While code reading and 

writing both depend on abstraction and chunking, there are differences in how they are 

employed. Code writing depends on chunk-based recall of concepts and patterns which are used 

to construct new code to solve a problem or build functionality [45]. By comparison, code 

reading questions rely on recognition of constructs in order to trace and understand how a 

program functions which can lead students to develop a mental model of a program and its 

function [91]. Dual-modality instruction scaffolds learning by helping students chunk code into 

meaningful functional pieces, which may help learners without experience develop this 
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recognition effectively and may also help those with prior experience reinforce their pre-existing 

mental models of programming. However, this scaffolding – which helps students chunk code – 

was not available on examinations. Students with no prior experience may not have sufficiently 

developed the chunk-based recall mechanisms employed by experts [45]. I believe that the more 

experienced learners were able to rely on their more-refined existing mental models for chunk-

based recall during Exam 1. 

Exam 2’s results are warrant reflection, as those with prior experience performed the 

same in both instructional conditions, but those with the least experience performed slightly 

worse in the intervention than the baseline condition. The differences between those with and 

without experience may rise from the timing of the end of the dual-modality instruction, which 

coincided with this exam. Though evidence I have presented suggests that students with prior 

experience may benefit from the scaffolding and cognitive support provided by dual-modality 

instruction, due to their previous experience, they had existing mental models they could depend 

on in addition to the dual-modality scaffolding. However, it may be that students with no prior 

experience were disadvantaged by losing a scaffolding that they had come to know and use in 

their learning of computer science too soon. 

The Final Exam went beyond the material covered in Exam 1, which was covered 

exclusively in dual-modality instruction, and Exam 2 which was covered partially in dual-

modality instruction, to content covered only in text, as the tools and environments in my study 

did not have blocks representations for advanced concepts such as programming paradigms and 

memory management. On the Final Exam, which comes at the end of the course, I found that 

students with no prior experience in the control and intervention semesters were similar, as they 

were in Exam 1. This may be because those students with no prior experience continued their 
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cognitive development and adapted to text instruction in the final weeks of the class as they spent 

more time without the dual-modality scaffolding. Prior studies have shown that students working 

in dual-modality programming environments become less dependent on blocks representations 

over time [9], and as experienced students would have begun the term with more knowledge than 

those new to programming, I would have expected them to grow beyond dependence on the 

scaffolding provided by the dual-modality programming environments sooner – in some cases, 

and in larger proportion, before the Final Exam, compared to those with no prior experience. It is 

important to note that in the absence of dual-modality instruction, I would have expected a 

similar pattern – i.e., students with more experience would make more rapid progress than those 

without experience in a typical classroom setting. Nevertheless, students in the intervention 

overall outperformed those in the baseline on all code reading exam sections, suggesting that 

students without experience may also have also benefited from the intervention. 

6.2.3.2 SCS1 discussion 

Like the overall comparison between the intervention and baseline conditions (RQ1), I 

did not find any significant interactions in the SCS1 assessment scores. This was true even when 

I found interactions on the course examinations. As a result, I was not able to draw conclusions 

about the answer to my research questions from this analysis. 

As noted in Section 6.1.3, the SCS1 has high difficulty, only fair discrimination ability, 

and does not allow for partial credit [98]. In addition, the SCS1 uses a pseudocode language [98] 

that is distinct from the language students learned in the course (Java). These aspects of the 

SCS1 suggest there may be room for future CS concept inventories to build upon the work of the 

SCS1, and the work in this study, to investigate refinement of question styles and approaches. 

While the SCS1’s pseudocode was intended to make the SCS1 broadly applicable in computer 

science instructional contexts using various programming languages [122], its syntax is based on 
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markup-style opening and closing keywords for code section in functions and loops (e.g., 

“WHILE condition … ENDWHILE”). This is very different from Java’s C-based curly braces 

style (“while condition {….}”), which makes the syntax potentially challenging for student who 

learn using C-family languages. Future concept inventories might be more effectively tailored to 

language families (e.g., C-family) to reduce the cognitive load of learning and applying a new 

syntax while taking an assessment. The increase in cognitive load is especially problematic when 

attempting to measure learning of novices, as those with little or no experience are less likely to 

have developed nuanced chunking mechanisms that allow experts to effectively transfer 

knowledge from one programming language to another [118]. Additionally, some topics – such 

as object-oriented programming – are commonly covered in CS1 courses, like UF’s, but these 

constructs are absent from the SCS1 and its predecessor, the FCS1 [122]. Integration of basic, 

common object-oriented principles – such as methods and attributes – into concept inventories 

like the SCS1 would allow instructors to test a broader spectrum of generally-accepted CS1 

topics. 

6.2.4 Performance Comparison by Prior Experience Summary 

When investigating interactions between prior programming experience and instructional 

condition (dual-modality or text instruction), I found interactions on the code writing sections of 

Exam 1 and Exam 2, as well as the Final Exam, which was limited to code reading and 

definitions. I found no interactions on code reading / definitional sections of Exam 1 or Exam 2. 

Specifically, on the code writing sections Exam 1, there was a significant positive 

difference between the intervention and baseline students with only text experience – i.e., those 

students with prior text experience performed significantly better in the intervention semester. 

This was contrary to my hypothesis – I had hypothesized that students with prior text experience 

would have more developed mental models of programming, and as a result I anticipated that 
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they would have less to gain from the scaffolding. Instead, this group performed the strongest in 

the intervention when compared to the baseline. On the writing section of Exam 2, the students 

without experience performed slightly worse in the intervention compared to the baseline, 

suggesting that more time with the scaffolding provided by dual-modality instruction may have 

benefited them. On the Final Exam, among those prior experience, text-only or blocks, there was 

a greater positive difference between the intervention and baseline groups – i.e., students with 

experience performed significantly better in the intervention group – and the students with no 

prior experience performed about the same in the intervention and baseline. 

Considering the results in the context of the Neo-Piagetian framework [71] and its 

connection to abstraction and chunking, we can find suggestions as to the reason for these 

results. While reading and tracing code requires students to be able to recognize constructs and, 

especially for large programs, to develop mental abstractions of sections of code [73], writing 

code additionally requires students to recall constructs and abstractions from memory [45]. In 

other words, code reading depends on skills associated with concrete operational reasoning 

(reasoning abstractly about familiar situations), including developing abstractions of code they 

can see. By comparison, code writing depends on skills associated with formal operational 

reasoning (reasoning abstractly about unfamiliar situations). For example, code writing requires 

recalling patterns stored as chunks in memory in order to apply these stored abstractions to new, 

unfamiliar problems – e.g., code that must be produced from a problem description [45]. This 

suggests that students with prior experience were reaching the stage of formal operational 

reasoning by the end of the course, while those without experience progressed to the point where 

they were demonstrating concrete operational reasoning. As such, the students in the intervention 

– those with and without experience – were performing in the concrete-operational to formal-
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operational range, compared to those in the baseline and those in typical CS1 classrooms, which 

Lister noted fall in the preoperational to concrete-operational range [73]. 

There are important implications for this work for students with different prior experience 

entering a CS1 course. Students with prior experience performed better in the intervention 

semester and never worse, suggesting this type of instruction may be useful even with 

experienced students. Beyond that, it is worth considering the timing of removal of scaffolding – 

in this case, the end of dual-modality instruction – and how it will impact less experienced 

students. In my study, in the exam just after dual-modality instruction stopped – Exam 2 – 

students without experience performed worse in the intervention than in the baseline. It is 

possible that the end of dual-modality instruction was premature for these students, and that they 

make have benefited from a longer intervention. Though beyond the scope of this dissertation, 

work exploring the timing of removal of this scaffolding could help future students and 

instructors in CS1 courses. 

6.3 Classroom Experience of Dual-Modality Instruction 

In my third and final research question I asked, “What are student perceptions of dual-

modality programming environments and instructional approaches, and how do they change 

over time, in the context of a CS1 course?” To investigate student perceptions of dual-modality 

programming environments and instruction, and how they change over time, I qualitatively 

coded student responses to survey questions about dual-modality instruction’s usefulness and 

analyzed the results. I also examined trends in log files detailing student use of the plugin and 

lecture slides. In this section I discuss both the student perceptions revealed by these data, along 

with my personal experiences teaching the course using these materials. This section uses 

randomly generated pseudonyms for each student in the study, which are composed of adjective-

animal pairs produced by the PetName module in Python [60]. 
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6.3.1 Student Perceptions of Dual-Modality Instruction 

During each course module, students completed a survey that included the binary 

response question, “Does instruction in dual blocks-text modes help you learn better?”, along 

with a free response “Why do you feel this way?” prompt. I first coded each free response in the 

sample. Then, for each code, I counted the number of participants whose responses at a given 

module time fit that code and divided by the total number of participants to arrive at a percentage 

of participants whose responses fit that code.  

From answers to these module survey questions, I found that more than half students 

(54.6%, n=137) perceived the dual-modality instruction as helpful in learning to program at the 

beginning of the course. Over time, the number of students that perceived dual-modality as 

helpful decreased – slowly until Module 7, when instruction switched to text-only (47.2%, 

n=183), and then decreased more rapidly. By the final survey in Module 11, 38.7% (n=136) felt 

the dual-modality instruction was helpful (Figure 6-4, Table 6-8). When I analyzed the 

qualitatively coded sample (Section 5.6.2) of student responses (25.0%, n=63) to the open-ended 

prompt about their reasons for saying dual-modality instruction was helpful in modules 1, 3, 4, 7, 

and 11, the most commonly cited reasons were Visualization (cited by 41.3%, n=26), Structure 

(22.2%, n=14), Understanding (20.6%, n=13), and Introduction (19.0%, n=12) (Table 6-9). 

While the reasons students cited (Table 6-10, Table 6-11, Appendix L) varied according to prior 

programming experience, as I discuss later in this section, Visualization was consistently cited 

by participants from all prior programming experience backgrounds as a reason they found 

blocks-based instruction helpful. 
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Figure 6-4. Percentage of students indicating dual-modality instruction was helpful, by module. 
 

Table 6-8. “Dual Mode Instruction is Helpful”, Range by Experience 
Prior Experience First (M1) Highest Lowest Last (M11) 
None 61.7% 61.7% (M1) 40.9% (M10) 43.8% 
Blocks 56.9% 58.3% (M4) 36.2% (M9) 37.1% 
Text-Only 44.0% 45.1% (M2) 31.0% (M9) 34.8% 
All 54.6% 54.6% (M1) 36.6% (M10) 38.7% 
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Table 6-9. Common Codes and Examples 
Code Definition Example 
Introduction Introducing constructs to 

beginners 
“It should be used as a beginner 
introduction.” 

Structure Structuring code or 
understanding structure 

“It... makes your work more structured” 

Understanding Understanding code / concepts 
generally 

“For block-programming... the logic is 
easier to understand than text.” 

Visualization Related to visualization of the 
code, facilitating or inhibiting 
learning (function) 

“I(t) helps visualize the code.” 

 

Table 6-10. Responses: Why Dual-Modality Instruction is Helpful (n=63) (>5% of Students) 
Code No Exp (n=27) Blocks (n=19) Text (n=17) All (n=63) 
Blocking 11.1%, n=3 21.1%, n=4 11.8%, n=2 14.3%, n=9 
Colors 14.8%, n=4 10.5%, n=2 17.6%, n=3 14.3%, n=9 
Formatting 3.7%, n=1 10.5%, n=2 5.9%, n=1 6.3%, n=4 
Introduction 7.4%, n=2 31.6%, n=6 23.5%, n=4 19.0%, n=12 
Learning (General) 7.4%, n=2 15.8%, n=3 5.9%, n=1 6.3%, n=4 
Learning (Syntax) 11.1%, n=3 5.3%, n=1 0.0%, n=0 6.3%, n=4 
Lectures 14.8%, n=4 10.5%, n=2 5.9%, n=1 11.1%, n=7 
Organization 14.8%, n=4 5.3%, n=1 0.0%, n=0 7.9%, n=5 
Reading 7.4%, n=2 10.5%, n=2 0.0%, n=0 6.3%, n=4 
Scaffolding 18.5%, n=5 15.8%, n=3 17.6%, n=3 17.5%, n=11 
Sequencing 7.4%, n=2 5.3%, n=1 5.9%, n=1 6.3%, n=4 
Simplicity 11.1%, n=3 0.0%, n=0 5.9%, n=1 6.3%, n=4 
Structure 22.2%, n=6 31.6%, n=6 11.8%, n=2 22.2%, n=14 
Understanding 14.8%, n=4 36.8%, n=7 11.8%, n=2 20.6%, n=13 
Visualization 40.7%, n=11 47.4%, n=9 35.3%, n=6 41.3%, n=26 

 

Table 6-11. Responses: Why Dual-Modality Instruction is Not Helpful (n=63) (>3% of Students) 
Code No Exp (n=27) Blocks (n=19) Text (n=17) All (n=63) 
Accustomed 14.8%, n=4 15.8%, n=3 0.0%, n=0 11.1%, n=7 
Confusing 7.4%, n=2 0.0%, n=0 11.8%, n=2 6.3%, n=4 
Dependency 7.4%, n=2 15.8%, n=3 17.6%, n=3 6.3%, n=8 
Distraction 0.0%, n=0 0.0%, n=0 11.8%, n=2 3.2%, n=2 
Experienced 3.7%, n=1 5.3%, n=1 0.0%, n=0 3.2%, n=2 
Learning Syntax 3.7%, n=1 5.3%, n=1 0.0%, n=0 3.2%, n=2 
Lecture 0.0%, n=0 5.3%, n=1 5.9%, n=1 3.2%, n=2 
No Longer Needed 14.8%, n=4 0.0%, n=0 0.0%, n=0 6.3%, n=4 
Speed  3.7%, n=1 10.5%, n=2 0.0%, n=0 4.8%, n=3 
Unnecessary 7.4%, n=2 0.0%, n=0 5.9%, n=1 4.8%, n=3 
Visualization 3.7%, n=1 0.0%, n=0 5.9%, n=1 3.2%, n=2 
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6.3.1.1 Participants with only text experience 

Among students whose only prior experience was in text, 30.0%-45.1% of students said 

that dual-modality instruction was helpful to them throughout the semester, with the highest 

percent saying it was helpful in the Module 2 survey (45.1%, n=32) and the lowest in Module 9 

(30.0%, n=22) (Figure 6-4). Text-experience students felt the dual-modality instruction was 

helpful in understanding concepts before writing text, with 35.3% (n=6) citing help in 

Visualization on at least one survey. One student said, “it helps me to learn the simpler way 

(blocks) before having to put concepts into practice (text)” (neutral-narwhal: Helpful, M3). Other 

text-experience students (11.8%, n=2) said that the dual-modality instruction and tools make for 

a handy Structure reference: “Just in case I forget something, I can see how its [sic] put together 

in blocks” (keen-kid: Helpful, M4). 

Several students with text experience empathized with new learners, pointing out that the 

dual-modality instruction could help students as an Introduction to programming (23.5%, n=4). 

For example, one participant reflected on the experiences of new programmers, stating, “Blocks 

is good for new programmers” (fond-falcon: Helpful, M7), and another saying, “blocks is a nice 

visualization of the code, which should help to see the scope of blocks and variables” (correct-

crane: Helpful, M1). Another pointed out that the dual-modality instruction was helpful in 

lecture when introducing new concepts: “Dual block text in class is helpful for highlighting 

general structured [sic] when they are introduced” (current-chipmunk: Helpful, M3). 

When looking to the coded free response samples, 17.6% (n=3) of students who said 

dual-modality instruction was not helpful pointed to issues of authenticity and dependency, with 

students referring to the blocks scaffolding as a type of crutch: “I feel the usage of programming 

with blocks creates a programmer who is reliant on pre-set syntax” (pseudonym big-buzzard: 

Not Helpful, Module 3). Another 11.8% (n=2) said they found the blocks distracting, with one 
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student noting, “I feel like the different colors in block mode distracts me. I feel like I can 

visual(lize) [sic] what I am programming better in text mode” (fond-firefly: Not Helpful, M1). 

6.3.1.2 Participants with only blocks or with both blocks and text experience 

More than half of students with prior blocks programming experience, on average, 

indicated that dual-modality instruction helped them learn in their answers to the first four 

module surveys (i.e., 56.9%, 51.4%, 51.4%, and 58.3%). In later modules, as students further 

developed their skills, the percentage declined. On the 11th and final survey, 37.1% (n=44) said 

they felt dual-modality instruction helped them (Figure 6-4). When asked why they indicated that 

dual-modality instruction helped them learn, participants with blocks experience – similar to 

those with only text experience – also ranked Visualization most often (47.4%, n=9), with one 

participant stating, “It helps to visualize more the regions of the code with the uses of colors 

shaped areas around the areas of the code” (ideal-ibex: Helpful, M1). Other commonly cited 

reasons included Understanding (36.8%, n=7), such as the student who said, “The blocks help… 

make the code easier to comprehend in the end” (modest-manatee: Helpful, M4). Some students 

indicated the dual-modality instruction helped them with Structure (31.6%, n=6); for example, 

one student mentioned, “it is easier to visualize the code and see which statement belongs where” 

(becoming-basilisk: Helpful, M3). Students with blocks experience also mentioned usefulness as 

an Introduction to programming (31.6%, n=6) and the effect of the Blocking mechanism (21.1%, 

n=4), with one student saying, ”When learning a new programming language, the syntax and 

structure of the language can be confusing. Block code is a little easier to read and share with 

other beginners as well. Being able to switch back and forth between block and text, can help 

with identifying where a function or loop begins and ends, and what is encapsulated within it.” 

(equipped-emu, Helpful, M1). 
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In later surveys, some students indicated that they had progressed in their skills over time 

and used the blocks constructs less often as a result; their early survey responses (e.g., M1) 

described their use of blocks constructs, and their responses to later surveys (e.g., M4, M7) 

indicated that they no longer needed or used blocks constructs. On the first survey, for example, 

one participant said, “When learning a new programming language, the syntax and structure of 

the language can be confusing. Block code is a little easier to read… being able to switch back 

and forth between block and text, can help with identifying where a function or loop begins and 

ends, and what is encapsulated within it” (equipped-emu: Helpful, M1). In the third survey, the 

same participant noted “I primarily code in text mode, but sometimes it helps to jump into block 

mode to see the color code looping” (equipped-emu: Helpful, M3). On the fourth survey, the 

same participant noted that they no longer depended on blocks: “I didn't really use blocks this 

time around. I am just more comfortable using text” (equipped-emu: Helpful, M4).  

6.3.1.3 Participants with no prior programming experience 

More than half of participants (50.5%-61.7%) with no prior programming experience 

indicated they found dual-modality instruction helpful during every module that dual-modality 

instruction was used, from the first survey through the seventh, in a range of 61.7% (n=58) to 

50.5% (n=51) (Figure 6-4). As students progressed in the course and developed their skills, the 

percentage of students indicating that dual-modality instruction was helpful gradually decreased 

over successive modules; nevertheless, even at the end of the course (M11), nearly half (43.8%, 

n=39) still found dual-modality instruction helpful. This finding suggests that the scaffolding 

provided by dual-modality instruction continued to provide constructive support for student 

learning at the end of the course. Similar to the responses provided by participants with prior 

blocks experience, the responses from the participants with no prior experience most frequently 

cited Visualization (40.7%, n=11), Structure (22.2%, n=6), Understanding (18.5%, n=5), and 



 

146 

Scaffolding (18.5%, n=5), and similarly their responses showed growth and change over time. 

On the first survey, one participant said, “[it] allows for better visualization of Java language 

with blocks, but also allows for necessary learning of Java language through text (strings, 

variables, etc.)” (sure-shrimp: Helpful, M1); by the final survey, the same student responded 

differently: “[it] better visualizes the way the code is set up and should run, but now I feel as 

though I do not necessarily need it to understand the text code” (sure-shrimp: Helpful, M11). 

6.3.1.4 Perceptions of dual-modality instruction discussion 

The findings from this study suggest that the instruction provided affordances for 

students to identify meaningful chunks of code which assists students with abstraction of code 

functionality. Consistently, students from all experience backgrounds indicated that dual-

modality instruction was helpful throughout the course. At the end of the course, 34.8% of 

students whose prior experience was exclusively in text said dual-modality instruction was 

helpful, along with 37.1% of blocks-experience students and 43.8% of students with no prior 

experience. 

Irrespective of prior experience, students noted Visualization, Structure, and 

Understanding as the top reasons for their answers when they indicated that dual-modality 

instruction was helpful. Students with text-only experience cited visualizations on lecture slides 

as helpful. They also empathized with new learners, identifying ways in which they felt those 

new to programming might benefit from the dual-modality instruction. Similarly, students with 

blocks experience noted that the dual-modality instruction was helpful as an introduction to 

programming, and others said it helped them block out chunks of code. Students with no prior 

experience also brought up the role the dual-modality instruction played in providing scaffolding 

for chunking and abstraction. As such, the findings support my initial hypothesis that dual-

modality instruction provided a blocking-mechanism support that would help students chunk to 



 

147 

develop code abstractions. Thus, these affordances of dual-modality instruction directly support 

chunking and abstraction skills characteristic of concrete and formal operational stages in the 

Neo-Piagetian framework for novice programmers. 

Among those with blocks experience and those with no prior experience, the findings 

suggest students grew in their understanding of programming and relied on the scaffolding less 

over time – growth we would expect to see as students develop their computing skills. 56.9% 

(n=41) of those with prior blocks experience felt dual-modality instruction was helpful in the 

beginning of the class. By Module 5, just under half (49.3%, n=34) still said the dual-modality 

instruction helped them learn better. Students with no prior experience also showed progression 

toward lower use of dual-modality representations. This progression occurred over a longer 

range of time – i.e., they found the dual-modality representations helpful and made use of their 

supporting scaffolding longer. Comments at the end of the course suggest some students no 

longer made use of the dual-modality representations as frequently, noting that their dual-

modality instruction had helped them learn and that they had reached the point where they acted 

independently of the scaffolding. 

Despite their perceptions of dual-modality instruction – and blocks programming in 

particular – as an unnecessary dependency, impediment, or otherwise unhelpful instructional 

method, experienced students in the intervention scored more highly on course examinations 

than those in the baseline. By comparison, students with little or no prior experience held 

positive perceptions of the dual-modality instruction and tools – including the dual-modality 

plugin. These differences further highlight the challenges of managing classrooms with students 

of mixed experience levels. These findings may justify separate sections for different students 

based on prior experience as has been discussed in the CS Education community and 
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implemented at some institutions [41]. In addition, the positive response to lecture materials 

using blocks representations – even among those students with only text experience – suggests 

that this approach could be useful even in later, more advanced programming courses when 

presenting code. 

6.3.2 Use of Dual-Modality Materials 

As evidence of use of dual-modality instructional materials, I focused my analysis on 

logs of students’ access to the lecture slides on the Canvas LMS and use of the dual-modality 

Amphibian plugin. In both cases, I analyzed overall trends as well as trends broken up over the 

instructional modules, usually one-week long, except around exams, when additional time was 

set aside for reviews and the exams themselves. I numbered the modules 0 (introductory week 

and tool installation) through 11 (the last module before the final examination). 

6.3.2.1 Dual-modality materials results 

On average across all weeks, 58.9% of the students accessed the lecture slides for the 

modules while they were being covered in class (Median=58.3%; σ=27.3%) (Figure 6-5). The 

highest percentage of accesses was in the weeks immediately before Exam 1, when 70.1% of 

students accessed the slides (Module 4), and before and following Exam 2 (Module 5, 70.7%; 

Module 6, 71.8%). 

88.0% of the students in the class (n=374) installed and registered the plugin and used it 

in at least one session, with a total of 148,931 logged events. Logs also indicated that an 

additional 48 unique unregistered plugin IDs were in use, but I could not determine if any of 

these were duplicate logins already accounted for. Logs of plugin events showed that most of the 

plugin-registered participants used the plugin during each module (Figure 6-5). These logs 

tracked events within the plugin itself – such as switching between blocks and text modes or 

dragging and dropping blocks. The plugin logged three major types of events: Palette Viewing 
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(selecting a category of blocks), Mode Swapping (switching from blocks to text or vice-versa), 

and Block Use (dragging / dropping blocks). When examining the plugin logs, I found that, 

aggregated across all weeks and students, the majority of participant actions when using the 

plugin were Palette Viewing (73.2%, n=108,674) followed by Mode Swapping (23.9%, 

n=35,503), with Block Use being the smallest category (2.8%, n=4,279). Examining the usage 

patterns by module dates, I found that the number of Palette Viewing (43.7%, n=2,450) and 

Mode Swapping (45.9%, n=2,577) events during the first module were comparable, with fewer 

Block Use events (10.4%, n=582). Over time, the percentage of Mode Swapping and Block Use 

events decreased while percentage of Palette Viewing events increased. By the final week, most 

events were Palette Viewing (81.9%, n=19,132) with a smaller number of Mode Swapping 

events (17.9%, n=4,182), and very few Block Use events (0.1%, n=46) (Figure 6-6). One student 

with only prior text experience said of the blocks mode, “it’s nice to have a simpler looking 

format to reference back to if I get stuck” (sound-sloth, Helpful, M2). 

There is also evidence in the surveys of students identifying how they used the dual-

modality materials in practice. For example, one student who used the plugin in 10 of the 11 

modules said the dual-modality instruction was helpful because “it’s nice to have a simpler 

looking format to reference back to if I get stuck” (sound-sloth: Helpful, M2). Another student, 

who used the plugin during every module responded on a survey that “It allows me to see two 

ways of coding the same program, and sometimes blocks are more structured” (sharp-stingray: 

Helpful, M7). 



 

150 

 
 

Figure 6-5. Percentage of students accessing lecture slides and using plugin, by module. 

 

 
 

Figure 6-6. Percentage of events of each type by module. 
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6.3.2.2 Dual-modality materials discussion 

These results suggest that students were using the lecture materials and plugin throughout 

the semester. The lecture slides being used each week, but most frequently before examinations. 

This is what I had expected, as students typically use lecture slides during the lecture, but also 

return and study from them before exams. I had expected the participants to use the plugin for a 

variety of tasks, including using blocks mode to write code by selecting, dragging, and dropping 

blocks. However, the most common event in the logs, Palette Viewing, involves students 

switching between displays of blocks-based code snippets. Combined with the student free 

responses noting the use of visualization as a reference for code structure, this suggests students 

are referring to the palettes as a quick-lookup mechanism for sections of code. 

After Palette Viewing, the second most common events were those associated with Mode 

Swapping. Some students noted in surveys that swapping modes helped them visualize their code 

and understand the structure of the code. While previous literature studying users of dual-

modality tools have noted that students swapped less often as they became accustomed to 

programming [9], findings from my research extend the community’s knowledge to include the 

types actions students engaged in and how those actions changed over time. For example, 

students used blocks to program in the first module (10.4% of events) and did so rarely by the 

last module (0.2%). They engaged in Palette Viewing more often as a percentage of events. This 

change in behavior suggests that the scaffolding of blocks mode to write and construct programs 

was not a highly utilized featured and that it was utilized less often over time. Instead, students 

used the tool to remember how to use certain structures they had already learned in text. I further 

consider and discuss these plugin events, and how they differ among students based on prior 

experience, in the next section of this chapter. 
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6.3.3 Instructor Experience 

Like many new course innovations, I found that the usage of dual-modality instruction 

required a significant amount of additional preparation in advance of the course launch, such as 

the development of tailored slides and assignment instructions, and some adjustments to 

instructional method – for example, extra time needed to be set aside to instruct students on the 

setup and use of the dual-modality plugin. However, overall, I was able to incorporate the 

instructional approach into my typical course structure without a complete rewrite of the lesson 

plans. A significant part of the preparation was modifying course materials (such as lecture 

slides, lab manuals, and project descriptions) to include blocks representations of code in 

addition to text representations. Additionally, course staff (such as graduate Teaching Assistants 

and undergraduate Peer Mentors1) had to be trained in the use of the dual-modality tool use, as 

well as how to address and navigate student problems in this space. Overall, the instructional 

approach was effective, and students and instructional staff responded positively to the 

integration of dual-modality tools and materials.  

The Amphibian plugin played a key role in the study. Its addition on top of the existing 

technology stack (including the Java runtime environment and IntelliJ IDEA) introduced a new 

level of complexity, necessitating additional preparation for potential troubleshooting challenges. 

In previous work with middle school students, I had employed a similar instructional approach, 

but using a variant of the web-based Pencil Code environment. However, in that environment, 

we were not able to write programs that could exist outside of the Pencil Code turtle graphics 

sandbox. Based on this previous experience, I developed the Amphibian plugin, and in practice, I 

 
1 In UF’s Herbert Wertheim College of Engineering, undergraduates serving as course assistants are referred to as 
Peer Mentors to distinguish them from Graduate Teaching Assistants. 
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found that the flexibility it provided to students – compared to a sandbox like Pencil Code – 

proved crucial to encouraging student exploration of programming in general. 

The student experience and use cases were surprisingly different from what I had 

originally anticipated in designing the study and instruction. In particular, I had expected 

students to make heavy use of the blocks programming available in Amphibian, but in fact this 

was rare. Instead, students used it for a variety of supporting functions – such as identifying 

structure, helping them understand the connections between blocks, help with debugging, and as 

a quick-reference for common constructs and library functions. This suggested to me that the 

block structures were important, but rather than helping students to write new code, they were 

more often used by students to make sure they understood the structure of their own code and to 

ensure its correctness. Beyond offering a block programming environment, students found value 

in the visualizations in slides and materials. Expanding on these visualizations, and adding more 

object-oriented constructs, may further aid student conceptualization and learning of computer 

science. In addition, despite the voluntary nature of the blocks programming – no student was 

compelled to use the blocks mode in the class – some students with text experience indicated in 

surveys that they felt strongly that the availability of blocks-mode programming was detrimental 

to other less-experienced students, with many suggesting new learners should be forced to work 

in text and/or that it was a disservice to new programmers. When utilizing dual-modality 

instruction in the future, I plan to specifically address this perception by explaining the 

motivation and function of the dual-modality instruction, as well as by outlining the findings of 

this study – that those students who learned via dual-modality instruction outperformed those 

who learned via text on course exams. 
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Based on my experience in the course, in the future I would make adjustments to how I 

employ dual-modality instruction, and these may be instructive to other teachers considering use 

of the approach. In particular, developing separate paths for students with prior experience and 

those with no prior experience is important, as these learners reacted to – and learned from – 

dual-modality instruction in different ways. While more than a third of students found the plugin 

helpful across all experience levels, their perceptions varied according to prior experience. The 

students with the most prior experience largely appreciated the dual-modality presentation 

materials (slides, manuals, and descriptions), but some did not show the same enthusiasm for the 

dual-modality plugin (and especially blocks programming support). On the other hand, students 

with less experience more frequently said they felt that the plugin was helpful for them. This is 

supported by our results, which generally show students performing better in the intervention 

compared to the baseline. Future research could help make clear how much the dual-modality 

plugin, vs class presentation materials, contributed to the performance of students with and with 

no prior experience. Where practical, a separate instructional environment for inexperience and 

experienced students [41] would allow the findings of such an investigation to be put into 

practice. For example, if it were found that students with prior experience benefit exclusively 

from the presentation materials, but not the dual-modality plugin, targeting the plugin toward 

students without or with little experience would allow these students to benefit from the plugin 

without introducing it to experienced students who may perceive it as a crutch. In this study, the 

dual-modality representations in presented materials had support from students at many 

experience levels. As such, it is worth exploring whether dual-modality instruction could be 

utilized in later coursework (such as a CS2 or data structures course) as well.  
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6.4 Findings & Discussion Summary 

In this study, I examined dual-modality instruction and learning in a CS1 course. Overall, 

I did not find differences in participant scoring on the SCS1, but students performed better on 

most course examinations in the intervention than the baseline semester. Notably, where topics 

were not covered in dual-modality instruction, I did not find significant differences on exam 

scores. The course examinations had more nuanced grading with partial credit and were tuned to 

the topics of the course, unlike the SCS1, which may explain these findings. 

I also examined interactions between instructional condition and students’ prior 

experience. While I had expected those with no prior experience to show the greatest difference 

between intervention and baseline groups, and those with text-only experience to show the least 

difference, I found that the opposite was true. When I examined the interactions (where present) 

between prior experience and condition, they were most pronounced among those with text 

experience, where the intervention performed better, and the least pronounced differences were 

among those with no prior experience. Interestingly, this was exclusive to the code writing 

midterm sections and the Final Exam. Code writing uses recall (unlike code reading which relies 

more on recognition), so students with more experience may have been building on and 

strengthening pre-existing mental models. By the same token, there are indications that by the 

end of the class, most students – but especially those with prior experience – had dispensed with 

the dual-modality tools; as such, students with prior experience may have “graduated” beyond 

the need for the tools. Further work in this area could examine whether dual-modality tools 

representing advanced object-oriented concepts could be developed. 

Finally, I looked at the perceptions of students and the instructor experience. Students 

across all types of prior experience identified Code Visualization as a key factor in helping them 

learn via dual-modality instruction, and those with prior blocks experience and no experience 
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also noted help with Code Structure and Code Understanding frequently. Even though students 

with prior experience exclusively in text showed the greatest difference when comparing the 

intervention and baseline groups, these students were least likely to say they found the dual-

modality instruction helpful – with only a minority indicating as much from the very beginning. 

By contrast, those with prior blocks experience felt it was helpful for the first few weeks, while 

those with no experience found dual-modality instruction helpful for as long as dual-modality 

instruction was used in the classroom. This suggests that it would be valuable for further research 

to investigate how far the benefits of dual-modality instruction might extend – perhaps into later 

coursework – and identify additional ways to help students with experience learn while 

supporting positive perceptions among them of the efficacy of the instruction.
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CHAPTER 7 
CONTRIBUTIONS 

Here I enumerate the contributions to the field of computer science education that come 

from my dissertation work – specifically, (1) foundational work: initial studies with elementary, 

middle, and CS1 students on perceptions of programming, prior experience, and dual-modality 

code representations; (2) a technical contribution: building the Pencil Code Python variant and 

the Amphibian dual-modality IDE plugin for Java; (3) an empirical contribution: identification of 

the connection between dual-modality instruction and learning in a CS1 course; and (4) an 

instructional contribution: analysis of perceptions of students and instructor experience for the 

dual-modality instructional approach. 

7.1 Foundational Studies (Perceptions of Programming & Dual-Modality Representations) 

My early work with K-12 students focused on how student perceptions and prior 

experience mold their views of programming moving forward. In working with elementary 

school students, I discovered that those students with prior experience held more nuanced views 

of programming – focusing not just on artifacts that can be created, but the role of 

communication and how it can be used to help others. I followed up on this work with middle 

school students, with whom I investigated how experience in different representations related to 

student perceptions of text programming. The students in this study who worked in the dual-

modality programming environment held positive perceptions of text more often and negative 

perceptions of text programming less often than those students who moved directly from blocks 

to text, demonstrating the potential of dual-modality programming environments to alleviate 

negative feelings about text programming. 
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7.2 Technical: Python Pencil Code Variant & Amphibian Dual-Modality Java Plugin 

Java and Python are common introductory languages in K-12 and college levels. Before I 

began my work, dual-modality programming environments did not support Python of Java 

languages, nor did they support IDE-based development or development of generic programs. By 

integrating Python into the Pencil Code environment will support instructors who wish to 

introduce the Python language using a dual-modality instructional approach in K-12 schools. 

Further, the Java plugin I developed will enable instructors to more easily incorporate dual-

modality instruction into such CS1 courses and also enable more rigorous research into these 

approaches by allowing researchers to reduce the impact of other variables (such as different 

languages, software systems, and development environments). Historically, blocks-based 

environments have been geared toward children and have largely been limited to sandboxed 

environments; the Amphibian dual-modality plugin I built makes blocks-based programming 

accessible broadly for any type of development. In addition, those dual-modality programming 

environments that existed previously are currently limited to the imperative language paradigm, 

even when working within languages that support object-oriented programming. The addition of 

a fundamentally objected-oriented language to the Droplet Editor has necessitated design of 

object-oriented blocks-based constructs which will enable other object-oriented languages to be 

added more easily in the future. The plugin, along with its source code, is available on a public 

source repository on GitHub: https://github.com/cacticouncil/amphibian. 

7.3 Empirical: Learning and Dual-Modality Approaches to CS Instruction 

Based on my analysis of the CS1 study’s results, this research identified: 

1. relationship between dual-modality instruction and student learning; 
differences correlated to prior programming experience by type; and 
performance differences by instructional condition on assessments (e.g., writing vs reading). 
 

https://github.com/cacticouncil/amphibian
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My work showed that the students in the intervention group (dual-modality instruction) 

outperformed those in the baseline group (text instruction) on course exams, but not on the 

SCS1. By using the demographic survey to account for prior experience, I found that there were 

differences in how students scored based on prior experience (none, blocks, or text-only) – 

students with prior experience outperformed those with no prior experience on the code-writing 

sections of the exams and the final exam. These results from the SCS1 and from the course 

examinations contribute to the literature by helping researchers and educators understand how 

dual-modality instruction connects to learning in computer science.  

7.4 Instructional: Perceptions in Dual-Modality Programming Environment 

Using data I collected in the CS1 study (as outlined in section 5.5), I analyzed student 

perceptions and summarized my experience in employing dual-modality instruction in a 

classroom environment. I also examined problems encountered, solutions employed, overall 

results, and made recommendations. I found that, even at the end of the class, more than one-

third of the students still found dual-modality instruction helpful, and this was true for all prior 

experience groups (no experience, blocks, and text-only), suggesting that students can benefit 

from dual-modality instruction even at the end of a CS1 course. This analysis provides guidance 

to computer science educators for using dual-modality programming environments in their 

classrooms while providing researchers with a case study to consider in later research endeavors. 
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CHAPTER 8 
CONCLUSIONS 

This dissertation has answered open questions within the literature of computer 

programming learning environments and particularly those using dual-modality representations. 

In this section I summarize the problem, solution, my work, and my contributions to the field. 

8.1 Problem 

Students of programming in computer science must master several skills, among them 

syntax, semantics, chunking, abstraction, computational thinking, and troubleshooting [125]. 

Blocks-based environments showed promise in helping students develop skills [89, 31]. 

However, the literature suggested students may struggle when moving to text-based 

environments [134]. In addition, even once students have mastered syntax, they must still 

develop general expertise in programming – and the ability to translate their ideas into running 

code – while moving from the sensorimotor to preoperational to operational stages of reasoning 

in the Neo-Piagetian framework [71]. 

8.2 Proposed Solution 

Dual-modality block-text systems, offering both text and blocks-based representations, 

were developed to provide a bridge for students between learning environments and production 

languages [7]. Specifically, these environments offered promise in being able to allay the 

difficulties students face when working in text-based representations by adopting some of the 

scaffolding and affordances of blocks-based representations [14]. In addition, by linking textual 

and blocks-based modes of the same language, dual-modality blocks-text systems may facilitate 

chunking and abstraction by visually nesting code blocks (such as those of function or 

conditional constructs) [71]. My work evaluated the use of dual-modality instruction to facilitate 
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learning in early programming coursework and differences in performance and student 

perceptions that arose due to prior programming experience [16]. 

8.3 Early Work 

My early work included (1) an examination of perceptions in blocks-based and text-based 

programming with children, and development of a custom dual-modality programming 

environment variant, and (2) creation of a dual-modality curriculum and a custom dual-modality 

representation programming assessment for middle school students, and an analytical 

comparison of perceptions of blocks, text, and dual-modality representations from a study with 

middle school students. I summarize this work in this section. 

8.3.1 Perceptions of Programming Investigations 

I conducted a study of programming and specific construct perceptions with children in a 

summer game in 2015. I posited that, while blocks-based tools can help facilitate the learning of 

computer science concepts at younger ages, students encounter challenges translating their 

experiences into production languages; I suggested development of a bridge between blocks and 

text. This initial study’s purpose was to identify how prior programming experience connected to 

overall perception of the act of programming and specific language constructs. This study’s 

results, which showed that the children with and without prior programming experience had 

distinct patterns in their perceptions of programming, provided guidance for later work which 

focused on qualitative coding and analysis of perceptions of blocks-vs-text paired with 

quantitative score analysis. 

8.3.2 Initial Evaluation of Perceptions & Learning 

I conducted a study at a middle school in Central Florida to collect data on the use of 

dual-modality instruction and learning and perceptions of programming. The purpose of this 

study was to identify how use of bi-directional dual-modality programming environments 
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connects to student learning and perceptions of programming and computer science. The focus of 

the initial analysis was perceptions of programming specifically and learning generally. 

To facilitate this work, I integrated a Python runtime environment into Pencil Code and 

worked with a team of undergraduate students to create a Python API for Pencil Code. This work 

allowed instruction using Pencil Code in the Python language. To measure learning, I developed 

a custom dual-modality assessment with representations in blocks and text. I created an 

assessment in dual text-blocks representations with three isomorphic variants of each question so 

that the same concept could be tested at three points in time to measure change in performance 

over time. I found that students who started in blocks and then worked in hybrid environments 

before moving into text held more positive views of text programming compared to students who 

moved directly from blocks to text programming. This prompted me to further investigate how 

dual-modality programming environments and tools could be used in college level coursework 

and how it might change the classroom, affect perceptions, and connect to learning. 

8.4 Final Study 

The final work for my dissertation study is summarized here. This includes development 

of the Amphibian dual-modality Java language IDE plugin for IntelliJ IDEA, development of 

dual-modality classroom materials, analysis of responses on the custom and SCS1 assessments, 

and data collection during the dual-modality instructional intervention. 

8.4.1 Amphibian Dual-Modality Java Language IDE Plugin for IntelliJ IDEA 

I developed a dual-modality plugin for the IntelliJ IDE in order to lay the groundwork for 

my proposed work. At the time of the plugin’s development, there were no dual-modality tools 

for standalone IDE-based development, or development of general-purpose programs. A group 

of students and I developed a dual-modality IDE plugin from Pencil Code’s Droplet Editor to 

enable switching between blocks and text within a production environment. To facilitate 
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practical study of CS1 student performance in a “real-world” environment, I developed a Java 

variant of the dual-modality IDE plugin, which I dubbed “Amphibian”. This tool will enable 

teachers of Java courses – including those of AP CS and many introductory college courses – to 

incorporate a blocks/text transition into the curriculum. The plugin was used in my study of dual-

modality instruction and learning in a CS1 classroom. 

8.4.2 Dual-Modality Instruction & Curriculum 

I developed new materials for the CS1 (COP3502) course materials utilizing dual-

modality representations in order to facilitate student use of and learning via the dual-modality 

programming environment in the study. These materials, along with student responses to surveys 

and instructor notes, were used to analyze student perceptions and the instructor experience 

during the intervention. This analysis can be used by future instructors of early programming 

courses to identify potential strategies for introduction of dual-modality programming 

environments into classroom instruction. 

8.4.3 Instrument Evaluation 

In Fall of 2017 I collected SCS1 assessment results from participants in the CS1 course at 

the University of Florida (COP3502) at the end of the term. Students were offered extra credit to 

participate in a concept inventory test just before the final examination. Both the custom 

assessment described earlier and the SCS1 were used during this collection phase. I used data 

collected during this phase to determine that the SCS1 was an appropriate instrument and to 

decide on the structure of the intervention in my final dissertation study. 

8.4.4 Study of Dual-Modality Instruction and CS Learning 

I conducted a study at the college level in a multi-section COP3502 (UF’s CS1) course in 

Spring of 2018 and Fall of 2018 to examine the dual-modality instruction and learning in a CS1 

course. The participants from Spring 2018 learned via a traditional, text-based instructional 
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approach (the baseline group), while the participants from Fall of 2018 learned via dual-modality 

instruction (the intervention group). The intervention group used the Amphibian dual-modality 

IDE plugin and materials. Participants also answered survey questions throughout the term about 

their perceptions of dual-modality representation IDE plugin and materials. Both groups 

(baseline and intervention) completed the SCS1 at the end of the semester for extra credit. 

8.4.5 Analysis of Learning and Dual-Modality Instruction 

I analyzed the data from the intervention and baseline groups to identify differences in 

programming knowledge, particularly as it related to stages of cognitive development. As 

primary measures, I used student scores on the SCS1 and course examinations (two midterms 

and one final). Surveys, logs, and notes from the intervention group were used to contextualize 

results and provide supporting evidence for findings. Course examination sections (code reading 

and code writing) were analyzed separately. I also examined the role prior programming 

experience played in student scores. I anticipated that students in the intervention group would 

score more highly on tracing and code-completion questions on the SCS1, and on code reading 

and code writing questions on the course examinations, while students in both groups would 

score about the same on definitional questions. While I did not see differences in the SCS1 

questions, even by type, there were significant differences in the course examinations, with 

students in the intervention scoring higher than those in the baseline. Digging deeper, I found 

that significant results were more pronounced – and had a bigger effect size – on examinations 

for which all topics were covered in dual-modality instruction, compared to those that were 

covered partly in text or only in text. I also anticipated that the largest differences between the 

baseline and intervention groups would be among students with no experience, followed by 

experience in blocks – and that students with prior text experience would differ the least. 

However, my results showed the opposite: students with text-only prior experience performed 
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better on all three course exams in the intervention group compared to the baseline group, and 

with a greater positive difference than the difference among those with blocks or no prior 

experience. 

8.4.6 Examination of Student Perceptions and Instructor Experience 

I also analyzed student perceptions of dual-modality instruction and reported on my 

experience as an instructor employing dual-modality instruction based on surveys, usage logs, 

and instructor notes. The analysis includes student perceptions of dual-modality instruction and 

how it changed over time. I had anticipated that students would find the dual-modality 

instruction more helpful at the beginning of the course, but that over time they would find it less 

useful, and that is indeed what I found when examining student survey responses. I also found 

that more than half of students whose prior experience was exclusively text felt the dual-

modality instruction was not helpful throughout the course – especially blocks-based 

programming – which ran counter to the course examination results. By comparison, among 

those who had previous experience in blocks, or no experience, more than half said dual-

modality instruction was helpful at the beginning of the course, but fewer found it helpful by the 

end of the course, with some students explicitly mentioning that had outgrown the support 

provided by the dual-modality instruction. Finally, I detailed my experience in the classroom, 

identifying challenges, successes, and suggestions for other instructors who are considering the 

employment of dual-modality instruction in early programming coursework. This analysis will 

also help researchers to explore when and how transitioning from dual-modality instruction to 

pure-text instruction is appropriate in the classroom setting. 
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8.5 Contributions 

My contributions include three main elements: 

a. a technical contribution –dual-modality IDE plugin for the Java language; 
b. an instructional contribution – analysis of perceptions and experience, and materials; and 
c. an empirical contribution – analysis of dual-modality instruction and learning. 

 

The plugin and perception analysis provide tools and guidance to educators and 

researchers in the classroom, while the empirical work provides insight into how and where dual-

modality programming environments can have the most positive connection to learning. 

8.6 Future Work 

My work suggests several avenues for future consideration and exploration in research. I 

have examined dual-mode instruction as a whole, but I found that students with different 

experience levels reacted differently to dual-modality presentation materials (e.g., lecture slides 

and lab manuals) than to the dual-modality plugin that allowed programming in different modes. 

The benefits of dual-modality presentation materials may extend beyond early programming 

courses, and identifying whether such approaches help students in later courses (such as CS2 and 

Data Structures courses) would help instructors tailor CS course materials. In addition, the 

different reactions from students with and without prior experience suggest that employing the 

dual-modality plugin in earlier curricula – such as a “CS0” or AP CS Principles course – may 

help students learn even before reaching CS1 courses by helping them to link blocks and text 

representations. I also noted that my dual-modality instruction ended at basic object-oriented 

structures, and notably did not include such concepts as inheritance, interfaces, and abstract 

classes; integration of representations of such concepts into dual-modality tools – such as 

incorporating the visual inheritance modeling in BlueJ and GreenFoot [49, 51] – would allow for 

further investigation of the effectiveness of dual-modality instruction and tools in helping 
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students learn more complex computer science concepts. Finally, the benefit to even experienced 

programmers from the dual-modality representations in presentation materials suggests that there 

may be value even to experts in such a blocking mechanism. The students in the course used the 

blocks-mode of the plugin to check their understanding of code structure and ensure its 

correctness; this could be explored within professional IDEs – for example, by graphically 

delineating boundaries of constructs within text modes. 

The data collected in these studies also provides fertile ground for future work. Though 

outside of the scope of this dissertation, artifacts collected during the study with middle school 

students could be analyzed to identify how and when students used different types of constructs, 

and in-depth item analysis of student performance on the custom assessment could provide 

insight into how that custom assessment, and potentially other concept inventory assessments, 

could be improved. The plugin logs from my final CS1 study could be further analyzed to 

identify sessions in blocks and text modes, which could then be examined over time to see if the 

usage patterns my expectations that students would use the blocks mode less as they gained 

experience in programming. Chat logs collected from instructor discussions could also yield 

further insight into the classroom environment and perspectives not just of the main instructor 

(myself) but also those of graduate Teaching Assistants and undergraduate Peer Mentors. 

Additionally, explicitly analyzing student perceptions of helpfulness and plugin usage patterns 

for interactions could provide further evidence of and directly link the plugin’s connection to 

student perceptions and learning. 

There are important limitations of my work that could be a source for exploration in 

future work as well. In the final CS1 study, it is possible that a selection bias played a role in 

student differences, as the data were collected in different semesters, and did not use a random-
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control model. As I collected demographic responses from participants including educational 

history, I or others can use propensity score analysis [69] to address this limitation and provide 

supporting evidence for a causal relationship between the dual-modality instruction and 

improved performance and learning. I could also investigate whether there are meaningful trends 

in performance, tool usage, or perceptions along ethno-racial, age, or educational backgrounds. 

Investigation of these data could further help us craft instruction and curricula that best serve a 

diverse population in our community. 

8.7 Summary 

My doctoral work was inspired by my personal experiences in teaching and focused on 

early programming instruction, especially blocks-based environments. I began by examining 

how student perceptions are shaped by prior experience and programming constructs, and I 

suggested in my early work that a bridge between blocks and text could facilitate novice 

programmers moving into production languages. Later, my work focused on the connection of 

dual-modality programming environments to perceptions and learning, especially Pencil Code. 

In order to study these dual-modality programming environments, I participated in and led the 

development of several instructional tools, including a Python variant of Pencil Code and a 

custom dual-modality representation CS assessment. As evidence of the potential role of dual-

modality programming environments became more evident in the literature and my experience, 

my work shifted to focus on dual-modality instruction in CS1 classrooms. 

To investigate the role dual-modality programming environments could play in early 

programming courses, I developed a plugin architecture and Java language IDE plugin, as well 

as dual-modality instructional materials for use in a CS1 classroom. These tools allowed me to 

conduct a study of dual-modality instruction in a CS1 classroom. I have analyzed that data and 

reported in this dissertation on how dual-modality instruction connects with student learning, and 
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how it varies according to prior programming experience. I have also analyzed student 

perceptions and analyzed them within the context of the classroom experience in order to provide 

a template for future instructors who wish to employ dual-modality instruction in college 

classrooms. My work contributes an understanding, grounded in pedagogical theory, of how 

dual-modality representations connect with learning and provides tools and guidance to 

educators and researchers in the classroom environment. 
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APPENDIX B 
TIMELINE FOR DOCTORAL WORK 

 
Table B-1. Doctoral Work Timeline (Chronological) 
Period Task / Activity 
Spring 2015 Paper: “Every Child a Coder” workshop – position paper (accepted) [57] 
Summer 2015 Data Collection: Construct Perceptions in Children 
Fa. ‘15–Sp. ‘16 Data Analysis & Writing: Construct Perceptions in Children 
Summer 2016 Development: Pencil Code’s Python Variant 
Fall 2016 Development: Pencil Code’s Python Variant 

Qualifying Examination 
Spring 2017 Development: Pencil Code’s Python Variant 

Development: Custom Blocks/Text Assessment 
Study Design: Middle School Study 
Paper Submission: ICER Doctoral Consortium (accepted) [13] 

Summer 2017 Data Collection: Middle School Study 
Data Analysis: Middle School Study 

Fall 2017 Data Analysis: Middle School Study 
Paper: SIGCSE – Middle School Study (reworked for VL/HCC) 
Poster: SIGCSE – Construct Perceptions in Children (accepted) [15] 
Development:  Dual-Modality IDE Plugin Framework 
Data Collection: SCS1 & Custom Assessment in CS1 (instrument eval.) 
Study Design: CS1 & Dual-Modality Programming Environments 

Spring 2018 Item Analysis: Custom Assessment and SCS1 
Study Design: CS1 & Dual-Modality Programming Environments 
Data Collection: SCS1 in CS1 course (baseline) 
Development: Java Dual-Modality IDE Plugin 

Summer 2018 Study Design: CS1 & Dual-Modality Programming Environments 
Development: Dual-Modality Representation Materials 
Development: Java Dual-Modality IDE Plugin 

Fall 2018 Study Intervention:  Dual-Modality IDE Plugin & Course Materials 
Data Collection: SCS1 in CS1 course (intervention) 
Data Collection: Surveys, Plugin Logs, Course Grades 

Spring 2019 Dissertation Proposal Writing 
Summer 2019 Proposal Defense 

Paper: VL/HCC – Middle School Study (accepted, 2nd Best Paper) [14] 
Data Analysis:  CS1 & Dual-Modality Programming Environments 

Fall 2019 
 

Paper: SIGCSE – CS1 Amphibian Study (accepted, 2nd Best Paper) [16] 
Paper: Blocks & Beyond Workshop – Amphibian Plugin (accepted) [17] 

Fa. 19–Su.’20 Complete and Defend Dissertation 
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APPENDIX C 
MIDDLE SCHOOL STUDY: DEMOGRAPHIC QUESTIONNAIRE 

1. We want to learn if some tools help students learn to program better than others. If you 
decide to participate, you will be asked to fill out questionnaires on three days over the 
next five weeks while working with different programming tools. These questions will 
not be used to grade you, and there are no known risks to participation. You do not have 
to be in this study if you don’t want to and you can quit the study at any time. Other than 
the researchers, no one will know your answers, including your teachers or your 
classmates. If you don’t like a question, you don’t have to answer it and, if you ask, your 
answers will not be used in the study. I also want you to know that whatever you decide, 
this will not affect your grades in class. 
 
Would you be willing to participate in this study? [Yes] [No] 
 
(If a participant answers “No” to this question, they will be redirected to a “thank you” 
page with no further questions.) 

2. What is your gender identity? [Male] [Female] [Prefer to Self-Describe:_] 
[Decline to answer] 

3. What is your age? [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] ______ 
[Decline to answer] 

4. Please specify your ethnicity (check all that apply): [American Indian or Alaska Native] 
[Asian] [Black or African American] [Hispanic or Latino] 
[Native Hawaiian or other Pacific Islander] [White] [Other:______] [Decline to answer]  

5. Which environments/tools have you used before? Check all that apply. [Scratch] [Alice] 
[Pencil Code] [Hour of Code] [Others:   ] 

6. Which languages have you used before? Check all that apply. [Logo] [Python] 
[JavaScript] [HTML] [Others: ] [Blank] 
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APPENDIX D 
MIDDLE SCHOOL STUDY: PERCEPTION QUESTIONNAIRES 

Questions used a Likert scale [Strongly Agree] [Agree] [Neither] [Disagree] [Strongly Disagree] 

Personal Perceptions (Pre, Mid, & Post) 

1. Computers are fun. 
Computer jobs are boring. 
Programming is hard. 
I want to find out more about programming. 
I can become good at programming. 
I prefer to solve my own computer problems. 
I like the challenge of computer problems. 
My family, friends, and/or classmates ask me for help with computer problems. 
 

Mid-Survey Only, By Condition 

Text Condition 

1. I think programming in text is easy. 
2. I think programming in text is frustrating or hard. 
3. I think learning to program in blocks is more useful than text. 
4. I think learning to program in text is more useful than blocks. 
5. I would have preferred to program using blocks as opposed to text. 
 
Blocks Condition 

1. I think programming in blocks is easy. 
I think programming in blocks is frustrating or hard. 
I think learning to program in blocks is more useful than text. 
I think learning to program in text is more useful than blocks. 
I would have preferred to program using text as opposed to blocks. 
 
Hybrid Condition 

1. I think programming in blocks is easier than programming in text. 
2. I think programming in text is easier than programming in blocks. 
3. I think programming in blocks is frustrating or hard. 
4. I think programming in text is frustrating or hard. 
5. I think learning to program in blocks is more useful than text. 
6. I think learning to program in text is more useful than blocks. 
7. I would prefer to program using text as opposed to blocks. 
8. I would prefer to program using blocks as opposed to text. 
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Post-Survey Only, All Conditions 

1. I think programming in blocks is easier than programming in text. 
2. I think programming in text is easier than programming in blocks. 
3. I think programming in blocks is frustrating or hard. 
4. I think programming in text is frustrating or hard. 
5. I think learning to program in blocks is more useful than text. 
6. I think learning to program in text is more useful than blocks. 
7. I would prefer to program using text as opposed to blocks. 
8. I would prefer to program using blocks as opposed to text. 
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APPENDIX E 
CS1 STUDY: DEMOGRAPHIC QUESTIONNAIRE 

1. We want to identify the strengths and weaknesses of computer science assessments. If you 
decide to participate, you will be asked to fill out a demographic questionnaire. These 
questions will not be used to grade you. You will also be asked to take an assessment on 
computer science concepts, for which you will receive extra credit. The assessment will take 
60-120 minutes. You will receive 25 points of extra credit to be applied to your exam grades 
(out of 1000 points in the course.) You may also elect to do an alternative assignment, a 
course reflection essay, to earn the extra credit. Your assessment results will be connected to 
your class performance for research purposes only. No one other than the researchers and 
your teachers will know your answers or grades. There are no known risks to participation. 
You do not have to be in this study if you don’t want to and you can quit the study at any 
time. If you don’t like a question, you don’t have to answer it and, if you ask, your answers 
will not be used in the study. 
 
Would you be willing to participate in this study? [Yes] [No] 
 
(If a participant answers “No” to this question, they will be redirected to a “thank you” page 
with no further questions.) 

2. What is your name? (This will be used to connect your participation to the course) 
[Name] 

3. What is your UFL.EDU email address? [Email] 

4. May we contact you in the future about possible participation in follow up studies? [Yes] 
[No] 

5. What is your gender identity? [Male] [Female] [Prefer to Self-Describe: ________] 
[Decline to answer] 

6. What is your age? [________] [Decline to answer] 

7. Please specify your ethnicity (check all that apply): [American Indian or Alaska Native] 
[Asian] [Black or African American] [Hispanic or Latino] 
[Native Hawaiian or other Pacific Islander] [White] [Other(s): ________] 
[Decline to answer] 

8. How many years of programming do you have... 
In College: [Number selector] 
In K-12 Schools: [Number selector] 
Self-taught / practice: [Number selector] 

9. Have you taken any of the following courses in high school, and if so, what was your 
score on the AP exam? 
 
[Choices: Did not take course; Took course but not exam; 1; 2; 3; 4; 5] 
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[  ] AP Computer Science 
[  ] AP Computer Science Principles 
[  ] AP Calculus AB 
[  ] AP Calculus BC 
[  ] AP Physics 

10. Have you taken any of the following courses (other than this one) at the college level? 
[  ] Calculus I 
[  ] Calculus 2 
[  ] Computer Science 0 / Computational thinking course 
[  ] Computer Science 1 / Programming class in computer science 
[  ] Physics 1  

11. Which programming environments/tools have you used before? Check all that apply. 
[  ] Alice 
[  ] Code.org 
[  ] Scratch 
[  ] Pencil Code 
[  ] Python 
[  ] Java 
[  ] C# 
[  ] C++ 
[  ] C 
[  ] Logo 
[  ] Other(s): [________] 
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APPENDIX F 
CS1 STUDY: PERCEPTION QUESTIONNAIRES 

Questions used a Likert scale [Strongly Agree] [Agree] [Neither] [Disagree] [Strongly Disagree] 

 

Personal Perceptions (Pre-Survey Only) 

1. Computers are fun. 
2. Computer jobs are boring. 
3. Programming is hard. 
4. I want to find out more about programming. 
5. I can become good at programming. 
6. I prefer to solve my own computer problems. 
7. I like the challenge of computer problems. 
8. My family, friends, and/or classmates ask me for help with computer problems. 
 
 

Blocks/Text Perceptions (Pre, Mid, Post) 

1. I think programming in blocks is easier than programming in text. 
2. I think programming in text is easier than programming in blocks. 
3. I think programming in blocks is frustrating or hard. 
4. I think programming in text is frustrating or hard. 
5. I think learning to program in blocks is more useful than text. 
6. I think learning to program in text is more useful than blocks. 
7. I would prefer to program using text as opposed to blocks. 
8. I would prefer to program using blocks as opposed to text. 
 
 

Hybrid Instruction Perceptions (Mid, Post) 

1. What benefits do you think hybrid blocks-text instruction provides, and why? [Free 
response] 

2. What concepts or constructs do you think hybrid blocks-text instruction helps students 
learn or understand, and why? [Free response] 

3. How frequently in a week do you refer to the lecture slides to study, prepare, and/or do 
assignments? [Never] [Rarely] [Sometimes] [Frequently] [Always] 
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Weekly Survey 

1. Did you program in “Blocks” mode since the end of your previous lab (including this 
lab)? [Yes/No] 

2. Did you program in “Text” mode since the end of your previous lab (including this lab)? 
[Yes/No] 

3. What was your primary mode since the end of your previous lab (including this lab)? 
[Blocks/Text] 

4. Does instruction in dual blocks-text modes help you learn better? [Yes/No] 

5. Why do you feel this way? [Free response] 
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APPENDIX G 
CUSTOM ASSESSMENT 
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APPENDIX H 
ITEM ANALYSIS: CUSTOM ASSESSMENT IN CS1 COURSE 
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APPENDIX I 
ITEM ANALYSIS: SCS1 IN CS1 COURSE 

  



 

210 

APPENDIX J 
CONDITION AND EXPERIENCE INTERACTIONS 

Table J-1. Mean & Standard Deviation: Condition x Experience 
 No Experience Blocks Experience Text-Only 
Exams Basl. μ, σ Intv. μ, σ Basl. μ, σ Intv. μ, σ Basl. μ, σ Intv. μ, σ 
SCS1 All 48.3, 16.5 44.5, 16.7 55.0, 21.1 52.0, 16.3 54.4, 20.0 58.3, 18.5 
SCS1 Definitional 55.4, 17.6 51.5, 20.4 60.1, 23.8 60.3, 18.4 61.7, 19.4 62.6, 18.3 
SCS1 Tracing 48.0, 20.2 42.8, 19.2 52.3, 21.5 52.0, 20.4 56.8, 21.9 57.4, 22.1 
SCS1 Completion 40.2, 23.4 36.5, 20.8 51.0, 27.0 43.1, 22.2 44.4, 27.4 51.1, 25.3 
Ex. 1 Def. / Read. 56.7, 15.8 81.3, 14.8 63.7, 20.7 88.5, 10.1 60.0, 15.4 88.4, 12.1 
Ex. 1 Writing 60.7, 22.8 60.8, 25.9 79.7, 29.6 84.6, 17.5 70.6, 23.6 89.2, 15.0 
Ex. 2 Def. / Read. 70.5, 19.5 74.9, 20.1 76.2, 19.8 78.3, 14.4 72.2, 19.8 80.7, 15.8 
Ex. 2 Writing 67.6, 27.2 58.1, 25.9 74.4, 24.5 74.9, 22.6 69.5, 30.5 78.5, 18.8 
Final Exam 66.4, 17.4 69.1, 16.6 58.8, 17.4 74.8, 13.9 66.5, 16.7 79.2, 13.2 
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APPENDIX K 
PLUGIN EVENT COUNTS AND CATEGORY MAPPING 

 
Table K-1. Table of Event Counts and Percentages by Module (Chronological) 
M Date Range View Palette Get Block Put Block Go to Blocks Go to Text 
0 08/22–08/28 2450   (43.7%) 323 (5.8%) 259 (4.6%) 1308 (23.3%) 1269 (22.6%) 
1 08/29–09/04 3543   (48.7%) 377 (5.2%) 402 (5.5%) 1488 (20.5%) 1460 (20.1%) 
2 09/05–09/11 5206   (52.0%) 514 (5.1%) 584 (5.8%) 1882 (18.8%) 1826 (18.2%) 
3 09/12–09/18 8159   (61.1%) 461 (3.5%) 475 (3.6%) 2159 (16.2%) 2100 (15.7%) 
4 09/19–10/02 7577   (69.2%) 154 (1.4%) 124 (1.1%) 1566 (14.3%) 1527 (13.9%) 
5 10/03–10/09 7048   (74.0%) 109 (1.1%) 85   (0.9%) 1146 (12.0%) 1132 (11.9%) 
6 10/10–10/16 8511   (76.2%) 65   (0.6%) 116 (1.0%) 1228 (11.0%) 1251 (11.2%) 
7 10/17–10/23 4798   (76.3%) 32   (0.5%) 23   (0.4%) 717   (11.4%) 715   (11.4%) 
8 10/24–11/06 12066 (81.1%) 40   (0.3%) 28   (0.2%) 1380   (9.3%) 1359   (9.1%) 
9 11/07–11/13 10849 (83.3%) 9     (0.1%) 7     (0.1%) 1055   (8.1%) 1099   (8.4%) 
10 11/14–11/27 19029 (84.7%) 6     (0.0%) 5     (0.0%) 1704   (7.6%) 1726   (7.7%) 
11 11/28–12/11 19132 (81.9%) 23   (0.1%) 12   (0.1%) 2046   (8.8%) 2136   (9.1%) 

   
 
Table K-2. Mapping if Event Name to Event Category 
Event Category 
View Palette Palette Viewing 
Grab Block Block Use 
Place Block Block Use 
Go to Blocks Mode Swapping 
Go to Text Mode Swapping 

 



 

212 

APPENDIX L 
CS1 STUDY CODEBOOK AND RESULTS TABLE BY MODULE NUMBER 

Table L-1. Codebook: Why Dual-Modality Instruction is Helpful / Not Helpful 
Code Definition Example 
Accustomed Student is used to blocks/text “I am used to programming in blocks.” 
Aesthetic Related to the look (form); 

visual appeal; includes style 
“I like the look of text better than blocks” 

Boilerplate Used (blocks) to provide 
boilerplate / setup code / 
syntax 

“I use blocks to initially set the project up, 
but the text is what I use for the majority of 
my work.” 

Blocking Separation / identification of 
specific constructs / grouping 
of code into blocks 

“The colors make the grouping of code 
easier to follow for a beginner.” 

Colors Related to /mention of colors 
(usually of blocks) 

“I like seeing the commands color coded in 
instruction.” 

Confusing Contributes to confusion / 
misunderstanding 

“Blocks make things slightly more 
confusing.” 

Connection Establish / follow connections 
between constructs 

“Blocks... shows how... blocks fit together 
and how the logic flows” 

Correctness Related to correctness / validity 
of code 

“Because doing it in both blocks and text 
mode is very useful in showing how 
organized and valid my code is.” 

Debugging Finding mistakes in code “Blocks make it very hard for one to 
decipher issues within the text” 

Dependency Dependency on blocks inhibits 
learning of programming as 
done in the “real world”  

“Ultimately I believe this will hurt you the 
more you rely it, and then it's harder to 
switch to pure text while learning harder 
material.” 

Distraction More/fewer distractions in 
environment 

“I find blocks mode to be rather distracting 
to the eye, it sometimes takes my focus off 
the content” 

Enjoyability Expression enjoyment “I like coding as I type” 
Experienced Student indicated they had 

prior programming experience 
“I wrote most of my codes in text because I 
think people who have experience with 
java should use that.” 

Formatting Related to formatting of code “It allows me to see the proper way to 
format my code if I am confused.” 

Freedom Noted freedom of using either / 
both modes as a strength 

“Greater freedom with my coding” 

Functionality Related to understanding / 
conceptualization of 
functionality 

“I believe that it helps students understand 
the function of each block better than 
coding in text.” 

Importance Mention of general importance “Because I feel this more important.” 
Introduction Introducing constructs to 

beginners 
“It should be used as a beginner 
introduction.” 
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Learning 
(General) 

Facilitates / inhibits learning in 
general 

“I learn better in text because I program in 
text” 

Learning 
(Syntax) 

Facilitates / inhibits learning of 
new language syntax 

“I think the block coding will make it 
easier in the beginning of the class to write 
code when I still am learning Java syntax.” 

Lectures Help or hinder student(s) 
understand the lecture material 

“Especially when I am sitting far back in 
the lecture hall.” 

Links Blocks 
& Text 

Connecting concepts / ideas 
between blocks and text 

“It allows you to see the structure of the 
code in blocks while gaining the 
understanding of every part from the text.” 

Organization Related to organization of code 
/ concepts 

“Helps me organize my thoughts better.” 

No Longer 
Needed 

Student no longer needed 
blocks (suggesting they 
previously found them useful) 

“I have just stopped using block altogether 
because I have improved in my coding 
ability.” 

Perspective Seeing things from multiple 
perspectives / points of view 

“It just helps me see the same material 
twice” 

Preference Student noted a preference “I like text more” 
Puzzle-Like Resembles puzzle-piece 

systems 
“Blocks feels like a visual puzzle” 

Reading Reading / readability code “I think by programming in blocks you 
make your code easier to read” 

Scaffolding Provides cognitive support; 
helping students get "unstuck", 
reminders, framework, 
enumeration, etc. 

“I mainly used text, but switched if I 
couldn’t remember the syntax for a 
command or function.” 

Scope Related to program scoping for 
elements 

“Blocks is a nice visualization of the code, 
which should help to see the scope of 
blocks and variables.” 

Sequencing Facilitates conceptualization of 
sequencing / logic / execution 

“Because it is easier to visualize the 
sequences” 

Simplicity Simpler “I think blocks simplify the code” 
Speed Impacts how fast user can 

program 
“It… allows you to move faster” 

Structure Structuring code or 
understanding structure 

“It... makes your work more structured” 

Transitioning Relating to the transition 
between text and blocks modes 

“Learning in blocks then transitioning to 
text is the most helpful for me.” 

Understanding Understanding code / concepts 
generally 

“For block-programming... the logic is 
easier to understand than text.” 

Unnecessary Not needed for some reason “The blocks seem unnecessary at times, 
especially if you know what to type” 

Visualization Related to visualization of the 
code, facilitating or inhibiting 
learning (function) 

“I(t) helps visualize the code.” 
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Table L-2. Table of Code Counts of Responses Indicating Instruction was Helpful, by Module 
Code M1 M3 M4 M7 M11 No Exp Blocks Text All 
Accustomed 1 0 0 0 0 0 1 0 1 
Aesthetic 1 1 1 1 1 0 0 1 1 
Boilerplate 0 0 2 1 0 1 2 9 3 
Blocking 2 3 3 2 4 3 4 2 9 
Colors 3 3 2 4 2 4 2 3 9 
Connection 0 2 2 1 0 2 1 0 3 
Correctness 1 0 0 0 0 1 0 0 1 
Debugging 0 1 1 0 0 0 1 0 1 
Enjoyability 1 0 0 0 0 1 0 0 1 
Formatting 2 2 0 0 0 1 2 1 4 
Freedom 0 1 0 0 1 1 0 0 1 
Functionality 1 0 0 0 0 0 1 0 1 
Importance 0 0 1 0 0 1 0 0 1 
Introduction 7 5 3 4 3 2 6 4 12 
Learning (General) 2 3 1 0 2 2 3 1 6 
Learning (Syntax) 3 0 0 1 0 3 1 0 4 
Lectures 0 5 2 1 1 4 2 1 7 
Links Blocks / Text 1 0 0 0 0 0 1 0 1 
Organization 2 3 2 0 1 4 1 0 5 
Perspective 1 0 1 2 4 3 2 0 5 
Preference 0 0 1 0 0 0 0 1 1 
Reading 3 0 1 1 1 2 2 0 4 
Scaffolding 4 4 1 3 1 5 3 3 11 
Scope 1 0 0 0 0 0 0 1 1 
Sequencing 2 0 1 0 1 2 1 1 4 
Simplicity 1 2 0 1 0 3 0 1 4 
Speed 0 2 0 1 0 1 1 0 2 
Structure 5 4 5 6 3 6 6 2 14 
Transitioning 0 0 1 0 0 0 0 1 1 
Understanding 4 2 4 5 5 4 7 2 13 
Visualization 13 9 7 11 10 11 9 6 26 
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Table L-3. Table of Code Counts of Responses Indicating Instruction Not Helpful, by Module 
Code M1 M3 M4 M7 M11 No Exp Blocks Text All 
Accustomed 2 4 1 3 4 4 3 0 7 
Aesthetic 0 0 0 0 1 1 0 0 1 
Colors 1 0 0 0 0 0 0 1 1 
Confusing 1 2 0 1 2 2 0 2 4 
Connection 1 0 0 0 0 0 0 1 1 
Dependency 2 2 4 2 6 2 3 3 8 
Details 0 0 0 1 0 0 0 1 1 
Distraction 2 1 0 0 0 0 0 2 2 
Experienced 0 0 1 0 2 1 1 0 2 
Frustrating 0 1 0 0 0 0 1 0 1 
Learning (Syntax) 0 1 1 0 1 1 1 0 2 
Lectures 0 1 0 1 0 0 1 1 2 
No Longer Needed 0 1 2 1 1 4 0 0 4 
Practice 0 0 0 1 0 0 1 0 1 
Puzzle-Like 1 0 0 1 0 1 0 0 1 
Reading 0 0 0 0 1 0 0 1 1 
Speed 0 2 1 1 0 1 2 0 3 
Unnecessary 0 0 0 1 2 2 0 1 3 
Visualization 0 0 1 1 0 1 0 1 2 
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APPENDIX M 
DISCUSSION WITH CURRICULUM COMMITTEE CHAIR 

The following is the correspondence seeking and receiving approval to use the hybrid 
instructional approach in the COP3502 course. The following message was sent to the 
department’s Curriculum Committee Chair, Arunava Banerjee: 
 
From: Jeremiah Blanchard <jblanch@cise.ufl.edu> 
Sent: Tuesday, April 3, 2018 9:23 PM 
To: Banerjee, Arunava <arunava@ufl.edu> 
Subject: Curriculum committee  
 
Hi Dr. Banerjee, 
 
I am working on some updates to the Programming I course, and in hand with that I am looking 
into conducting a study about some of these changes and some tools I would like to bring into 
the course. 
 
Since I have a research interest in the results, it was suggested that I might see if there are a few 
minutes that I could come into the curriculum committee meeting briefly to describe the changes. 
In a nutshell - a lot of our youngest students come in with prior experience. Some of those are in 
text, but some are in blocks languages. I'm working on a tool that is intended to help students 
move into text more easily, and I would present multiple modes of the same source to students to 
build a connection between what they've learned previously and the content. (This won't involve 
any change in language or topics covered.) 
 
Regards, 
Jeremiah Blanchard 
 
The following was the chair’s response: 
 
From: Banerjee, Arunava <arunava@ufl.edu> 
Sent: Tuesday, April 4, 2018 10:15 PM 
To: Blanchard, Jeremiah J <jblanch@cise.ufl.edu> 
Subject: Re: Curriculum committee 
 
That is wonderful Jeremiah. We do not have regularly scheduled curriculum meetings (in fact, 
we do not have any physical meetings). When I need something passed by the committee, I 
simply run it via email. 
 
So long as you are not changing the curriculum, I would say that you should feel free to 
experiment. In fact, I would encourage you to do things that you believe in your heart will help 
the students learn better. Not all experiments turn out for the good, but so long has you genuinely 
intend it for improvement, I am happy to stand behind you. 
 
-Arunava 
____________________________________________ 
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Arunava Banerjee 
Associate Professor 
Computer & Information Science & Engineering 
University of Florida 
www.cise.ufl.edu/~arunava 
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