

BUILDING BRIDGES: DUAL-MODALITY INSTRUCTION AND INTRODUCTORY
PROGRAMMING COURSEWORK

By

JEREMIAH J. BLANCHARD

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2020

© 2020 Jeremiah J. Blanchard

To my dear departed Pops, who pushed me never to settle for less than the best of my
capabilities, and who always engaged with a gentle touch and kindness. While the world is
poorer for your absence, your words continue to echo inspiration in your progeny, and your
actions have set an example of love we can only hope to someday achieve. We miss you!

4

ACKNOWLEDGMENTS

I thank my advisors, Drs. Lisa Anthony and Christina Gardner-McCune, for the endless

hours working with an unconventional student. The time they have spent helping me to hone my

research and writing skills is a gift I hope I can pay forward to others in the future. Looking

back, it is hard to convey how much I have learned and how much they have changed the course

of my life. Thanks also go to my committee members – Drs. Kristy Boyer, Corrine Huggins-

Manley, David Weintrop, and Joseph Wilson – for reading drafts, providing generous feedback,

and helping and providing expertise throughout the proposal and defense process. I also thank

David Bau, whose invitation to work on the Pencil Code project opened the door to my eventual

dissertation research.

From the bottom of my heart, I thank my kind and ever-patient spouse, Kyoko, for

supporting my long and winding path through graduate school for nearly two decades. Without

her constant encouragement and incredible resolve, I could never have completed this journey.

Her sacrifices – not only supporting me, but also caring for our children during my long writing

nights and conference trips – were instrumental in the completion of this dissertation.

5

TABLE OF CONTENTS

 page

ACKNOWLEDGMENTS ... 4

LIST OF TABLES .. 10

LIST OF FIGURES .. 12

ABSTRACT ... 14

CHAPTER

1 INTRODUCTION ... 16

1.1 Research Motivation ... 17
1.2 Research Opportunities... 19
1.3 Research Questions & Hypotheses ... 20
1.4 Overview of Work .. 22

2 BACKGROUND ... 24

2.1 Learning to Program ... 24
2.1.1 Language Challenges .. 24

2.1.1.1 Syntax .. 25
2.1.1.2 Semantics ... 26
2.1.1.3 Perceptions ... 27

2.1.2 Developing Expertise.. 27
2.1.2.1 Sensorimotor .. 28
2.1.2.2 Preoperational ... 29
2.1.2.3 Concrete-operational ... 29
2.1.2.4 Formal operational .. 30
2.1.2.5 Summary .. 30

2.2 Programming Assessment... 31
2.2.1 Concept Inventories .. 31
2.2.2 Item Response Theory .. 33

2.3 Visual Languages & Environments ... 35
2.3.1 Development of Visual Programming Environments .. 36

2.3.1.1 Early visual programming systems .. 36
2.3.1.2 Blocks-based interface development ... 37

2.3.2 Contemporary Blocks-Based Environments .. 39
2.3.3 Efficacy of Blocks-Based Environments ... 40

2.3.3.1 Effectiveness as learning environment .. 41
2.3.3.2 Moving from blocks to text ... 42
2.3.3.3 Special considerations - environments are not equal 44

2.4 Multi-Modal Environments .. 45
2.4.1 Hybrid Modality Environments .. 45

6

2.4.2 Dual-Modality Programming Environments ... 48
2.4.2.1 Unidirectional translation (blocks to text).. 49
2.4.2.2 Bidirectional translation .. 51

3 STUDY OF PERCEPTIONS OF PROGRAMMING ... 54

3.1 Study: Construct Perceptions in Children (Summer Camp) ... 55
3.1.1 Study Context ... 55
3.1.2 Procedure ... 55
3.1.3 Qualitative Measures .. 57
3.1.4 Coding Process ... 58
3.1.5 Programming Definition Themes .. 58
3.1.6 Findings – Perceptions of Programming ... 59
3.1.7 Findings – Perceptions of Constructs .. 60
3.1.8 Influence on Course of Research... 61

3.2 Position Paper: Bridging Blocks and Text... 62

4 STUDY OF DUAL-MODALITY PROGRAMMING ENVIRONMENTS 64

4.1 Development: Python Variant of Pencil Code ... 64
4.1.1 Description of Work ... 65
4.1.2 Development .. 65

4.1.2.1 Language interpreter runtime .. 66
4.1.2.2 Python routines ... 66
4.1.2.3 Palette (text-to-blocks mapping) ... 66

4.1.3 Results .. 66
4.2 Development: Custom Dual Modality Assessment (Python Text/Blocks) 68

4.2.1 Description of Work ... 68
4.2.2 Development .. 68
4.2.3 Impact on Course of Research .. 70

4.3 Study: Perceptions and Concept Assessment (Middle School) 71
4.3.1 Study Context ... 71
4.3.2 Participants ... 72
4.3.3 Study Design .. 73
4.3.4 Data Collection ... 73

4.3.4.1 Surveys ... 74
4.3.4.2 Assessments ... 74

4.3.5 Data Analysis ... 75
4.3.6 Findings ... 76
4.3.7 Discussion .. 79

5 FINAL STUDY: LEARNING & DUAL-MODALITY INSTRUCTION 82

5.1 Research Questions & Hypotheses ... 84
5.1.1 Performance Comparison in Dual-Modality vs Text Instruction 85
5.1.2 Performance Comparison by Prior Experience .. 86
5.1.3 Classroom Experience of Dual-Modality Instruction ... 88

7

5.2 Amphibian: A Dual-Modality-Representation IDE Plugin for Java 89
5.2.1 Using the Amphibian Plugin ... 90
5.2.2 Architecture .. 93

5.2.2.1 The Droplet Editor .. 93
5.2.2.2 IntelliJ IDE Plugin Framework ... 94
5.2.2.3 Logging mechanism .. 95

5.3 Dual-Modality Curriculum ... 95
5.3.1 Instruction .. 96
5.3.2 Assignments ... 97
5.3.3 Ethical Considerations .. 98

5.3.3.1 Faculty review .. 98
5.3.3.2 Delay of pure-text instruction.. 98
5.3.3.3 Cognitive overload.. 99

5.4 Instrument Evaluation Study... 99
5.4.1 Context & Data Collection .. 100
5.4.2 Question Analysis ... 100

5.5 Study: Dual-Modality Instruction, CS Learning, and Classroom Experience (CS1)..... 102
5.5.1 Study Design .. 103
5.5.2 Participants ... 106
5.5.3 Data Collection ... 107

5.5.3.1 Examinations, assessments, and demographic surveys 107
5.5.3.2 Perception surveys and usage logs .. 108
5.5.3.3 Bias control .. 108

5.6 Analysis Methods: Dual-Modality Instruction and Learning 109
5.6.1 Examinations and Assessments ... 110

5.6.1.1 Hypotheses & expectations ... 110
5.6.1.2 SCS1 assessment questions ... 112
5.6.1.3 Course examination questions ... 112
5.6.1.4 Analysis tests .. 114

5.6.2 Surveys, logs, and notes .. 114
5.6.2.1 Qualitative data ... 115
5.6.2.2 Quantitative data ... 116
5.6.2.3 Surveys ... 116
5.6.2.4 Usage logs .. 116
5.6.2.5 Instructor notes ... 118

5.6. 3 Summary ... 118

6 LEARNING & DUAL-MODALITY INSTRUCTION: FINDINGS & DISCUSSION 119

6.1 Performance Comparison in Dual-Modality vs Text Instruction.................................. 119
6.1.1 Course Exam Results .. 119

6.1.1.1 Code reading & definitional questions .. 120
6.1.1.2 Code writing questions ... 120

6.1.2 SCS1 Results .. 121
6.1.3 Performance Comparison Discussion .. 121

6.1.3.1 Course Exam performance comparison discussion 122
6.1.3.2 SCS1 performance comparison discussion .. 124

8

6.1.4 Performance Comparison Summary .. 125
6.2 Performance Comparison by Prior Experience .. 126

6.2.1 Course Exam Results .. 126
6.2.1.1 Code reading / definitional questions .. 127
6.2.1.2 Code writing questions ... 129

6.2.2 SCS1 Results .. 132
6.2.3 Prior Experience Discussion ... 132

6.2.3.1 Course exam discussion .. 133
6.2.3.2 SCS1 discussion ... 136

6.2.4 Performance Comparison by Prior Experience Summary 137
6.3 Classroom Experience of Dual-Modality Instruction .. 139

6.3.1 Student Perceptions of Dual-Modality Instruction ... 140
6.3.1.1 Participants with only text experience ... 143
6.3.1.2 Participants with only blocks or with both blocks and text experience 144
6.3.1.3 Participants with no prior programming experience 145
6.3.1.4 Perceptions of dual-modality instruction discussion 146

6.3.2 Use of Dual-Modality Materials.. 148
6.3.2.1 Dual-modality materials results ... 148
6.3.2.2 Dual-modality materials discussion ... 151

6.3.3 Instructor Experience .. 152
6.4 Findings & Discussion Summary .. 155

7 CONTRIBUTIONS.. 157

7.1 Foundational Studies (Perceptions of Programming & Dual-Modality
Representations) ... 157

7.2 Technical: Python Pencil Code Variant & Amphibian Dual-Modality Java Plugin 158
7.3 Empirical: Learning and Dual-Modality Approaches to CS Instruction 158
7.4 Instructional: Perceptions in Dual-Modality Programming Environment 159

8 CONCLUSIONS .. 160

8.1 Problem .. 160
8.2 Proposed Solution .. 160
8.3 Early Work ... 161

8.3.1 Perceptions of Programming Investigations .. 161
8.3.2 Initial Evaluation of Perceptions & Learning .. 161

8.4 Final Study ... 162
8.4.1 Amphibian Dual-Modality Java Language IDE Plugin for IntelliJ IDEA 162
8.4.2 Dual-Modality Instruction & Curriculum .. 163
8.4.3 Instrument Evaluation ... 163
8.4.4 Study of Dual-Modality Instruction and CS Learning 163
8.4.5 Analysis of Learning and Dual-Modality Instruction... 164
8.4.6 Examination of Student Perceptions and Instructor Experience 165

8.5 Contributions .. 166
8.6 Future Work ... 166
8.7 Summary .. 168

9

APPENDIX

A CONFERENCES, PUBLICATIONS, & DEVELOPMENT ... 170

Published / Completed.. 170
In Progress ... 170

B TIMELINE FOR DOCTORAL WORK ... 171

C MIDDLE SCHOOL STUDY: DEMOGRAPHIC QUESTIONNAIRE 172

D MIDDLE SCHOOL STUDY: PERCEPTION QUESTIONNAIRES 173

Personal Perceptions (Pre, Mid, & Post) ... 173
Mid-Survey Only, By Condition... 173

Text Condition .. 173
Blocks Condition ... 173
Hybrid Condition .. 173
Post-Survey Only, All Conditions ... 174

E CS1 STUDY: DEMOGRAPHIC QUESTIONNAIRE .. 175

F CS1 STUDY: PERCEPTION QUESTIONNAIRES ... 177

Personal Perceptions (Pre-Survey Only) ... 177
Blocks/Text Perceptions (Pre, Mid, Post) ... 177
Hybrid Instruction Perceptions (Mid, Post) ... 177
Weekly Survey ... 178

G CUSTOM ASSESSMENT ... 179

H ITEM ANALYSIS: CUSTOM ASSESSMENT IN CS1 COURSE 208

I ITEM ANALYSIS: SCS1 IN CS1 COURSE .. 209

J CONDITION AND EXPERIENCE INTERACTIONS .. 210

K PLUGIN EVENT COUNTS AND CATEGORY MAPPING ... 211

L CS1 STUDY CODEBOOK AND RESULTS TABLE BY MODULE NUMBER 212

M DISCUSSION WITH CURRICULUM COMMITTEE CHAIR.. 216

LIST OF REFERENCES .. 218

BIOGRAPHICAL SKETCH ... 229

10

LIST OF TABLES

Table page

2-1 Questions on SCS1 by Discrimination Factor & Difficulty (Parker & Guzdial, 2016) 33

2-2 Summary of Visual Environment Affordances ... 45

2-3 Summary of Multimodal Environment Affordances ... 53

3-1 Interview Questions by Topic .. 56

3-2 Expectations of Perceptions based on Programming Experience 57

3-3 Programming Definition Themes ... 59

3-4 Percentage and Number of Participant Responses by Theme.. 60

3-5 Percentage of Participants Saying Constructs EASY for N > 4 (14.3%) 61

3-6 Percentage of Participants Saying Constructs HARD for N > 4 (14.3%), & If / Loop 61

4-1 Number of Questions by Concept, Type, Difficulty ... 71

4-2 Questions Comparing Blocks & Text Programming... 74

5-1 Course Topics & Mode for Instructional Intervention .. 97

5-2 Module Survey Questions (Weekly) .. 103

5-3 Demographic Groups by Condition.. 107

5-4 Measures by Research Question .. 109

5-5 Independent Variables ... 110

5-6 RQ1 – Dual-Modality Instruction and Question Performance - Hypothesis 111

5-7 RQ2 - Dual-Modality Instruction vs. Text Instruction by Experience - Hypothesis 111

5-8 List of Topics in Common by Exam .. 113

5-9 Dependent Variables.. 115

5-10 Time Window for Lecture Slide Usage by Module ... 117

5-11 Time Window for Plugin Usage by Module ... 118

6-1 Results Summary for Course Exams (Scores as Percent).. 121

11

6-2 Results Summary for SCS1 (Scores as Percent) ... 121

6-3 Course Exam Interactions: Condition x Experience ... 128

6-4 Mean & Standard Deviation, Final Exam: Condition x Experience 128

6-5 Mean & Std. Deviation, Exam 1, Writing: Condition x Experience 130

6-6 Mean & Std. Deviation, Exam 2, Writing: Condition x Experience 131

6-7 SCS1 Interactions: Condition x Experience (See Appendix J for Means / Std. Dev.) 132

6-8 “Dual Mode Instruction is Helpful”, Range by Experience .. 141

6-9 Common Codes and Examples .. 142

6-10 Responses: Why Dual-Modality Instruction is Helpful (n=63) (>5% of Students) 142

6-11 Responses: Why Dual-Modality Instruction is Not Helpful (n=63) (>3% of Students) . 142

B-1 Doctoral Work Timeline (Chronological) .. 171

J-1 Mean & Standard Deviation: Condition x Experience .. 210

K-1 Table of Event Counts and Percentages by Module (Chronological) 211

K-2 Mapping if Event Name to Event Category .. 211

L-1 Codebook: Why Dual-Modality Instruction is Helpful / Not Helpful 212

L-2 Table of Code Counts of Responses Indicating Instruction was Helpful, by Module 214

L-3 Table of Code Counts of Responses Indicating Instruction Not Helpful, by Module 215

12

LIST OF FIGURES

Figure page

1-1 “Hello world!” program in Scratch (blocks-based) and C (text-based) 18

2-1 Standard Item Curve. (Sudol, 2010) ... 34

2-2 Guttman (a), Easy (b), Linear (c), & Descending (d) Curves (Sudol, 2010) 35

2-3 Early version of AgentSheets (A. Repenning) [107]... 37

2-4 Blocks-Based Interfaces: LogoBlocks [54] .. 38

2-5 a) Alice environment [104] (left) and b) Scratch environment [77] (right) 40

2-6 Hybrid modality environments: a) BlueJ [63] and b) Greenfoot [51] 48

2-7 Pencil Code: Blocks-based mode, text-based mode, output window [9] 53

3-1 Eclipse IDE [141] .. 63

4-1 Pencil Code architecture, with added Python-variant modules highlighted in gray 67

4-2 Pencil Code Python variant: Blocks-based mode, text-based mode, output window 67

4-3 Custom assessment: a) blocks / text variants (left) and b) isomorphic variants (right) 70

4-4 Timeline of time spent in text / dual / blocks modes by condition 70

4-5 Distribution of survey Likert responses .. 70

5-1 Amphibian Blocks Mode editor showing a) tabs for switching between modes,
puzzle-piece connection, b) blocks representation of the current program, and c)
block toolbox from which users can drag and drop constructs .. 92

5-2 Amphibian Blocks Mode editor showing a) Java object-oriented constructs and b)
drop-down menus used for types and modifiers ... 93

5-3 Amphibian architecture with new elements highlighted in gray: a) Modifications to
the Droplet Editor and b) Architecture of the IntelliJ Plugin ... 94

5-4 Example of switching from text to blocks mode: a) successful change to blocks mode
and b) syntax error message ... 95

5-5 Instructional material – presentation in blocks, followed by conversion to text 97

5-6 Curriculum assignment documentation – sample code in blocks and text 98

13

5-7 Gantt chart showing date ranges for surveys, examinations, and SCS1 assessment....... 105

5-8 Definitional (left) and code reading (right) question samples from Exam 1 112

5-9 Code writing question from Exam 1 (abbreviated) ... 113

6-1 Boxplot of Final Exam scores by condition and prior programming experience 1288

6-2 Boxplot of Exam 1 writing scores by condition and prior programming experience 128

6-3 Boxplot of Exam 2 writing scores by condition and prior programming experience 128

6-4 Percentage of students indicating dual-modality instruction was helpful, by module 141

6-5 Percentage of students accessing lecture slides and using plugin, by module 150

6-6 Percentage of events of each type by module ... 150

14

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

BUILDING BRIDGES: DUAL-MODALITY INSTRUCTION AND INTRODUCTORY

PROGRAMMING COURSEWORK

By

Jeremiah J. Blanchard

August 2020

Chair: Lisa Anthony
Cochair: Christina Gardner-McCune
Major: Computer Engineering

Blocks-based programming environments have become commonplace in introductory

computing courses in K-12 schools and some college level courses. In comparison, most college-

level introductory computer science courses teach students text-based languages which are more

commonly used in industry and research. However, the literature provides evidence that students

may face difficulty moving to text-based programming environments even when moving from

blocks-based environments, and some perceive blocks-based environments as inauthentic. Bi-

directional dual-modality programming environments, which provide multiple representations of

programming language constructs (such as blocks and text) and allow students to transition

between them freely, offer a potential solution to issues of authenticity and syntax challenges for

novices and those with prior experience in blocks by making clear the connection between

blocks and text representations of programs. While previous research has investigated transition

from blocks-based to textual environments, there is limited research on dual-modality

programming environments.

The goal of my dissertation work is to identify how use of bi-directional dual-modality

programming environments connects with learning in introductory programming instruction at

15

the college level. I have developed a bi-directional dual-modality Java language plugin and

evaluated the use of said tool within an introductory computer science (CS1) course. In my work

I analyzed understanding and retention of specific computing / programming concepts, how any

connections vary according to prior programming experience, and in what ways dual-modality

programming environments affect the classroom learning experience.

16

CHAPTER 1
INTRODUCTION

When learning computer science, students must master several skills, including

computational thinking, fundamentals of programming, and computer science theory [125]. To

practically apply computer science skills, students must work in a language’s semantic structure

and syntax while learning about programming environments. They must also progress through

stages of expertise over time. To draw on the Neo-Piagetian framework, students must develop

expertise in programming by moving from the sensorimotor stage (in which they know what a

program does, but not how it does it) to later concrete and formal operational stages (in which

they can understand programs by breaking them into chunks and considering their abstract

function) [71]. Finally, students must be able to translate their ideas into code that runs within the

target environment.

Computer science instructors and educational researchers have recognized the positive

role that appropriate scaffolding can play in programming instruction to help address these

challenges; this has motivated the development of instructional programming environments to

scaffold the learning of computational thinking [58]. For example, blocks-based environments,

such as Scratch and Alice, were developed by researchers in computer science education to

decouple the learning of syntax from programming, computational thinking, and computer

science theory by allowing students to program without text, eliminating syntax barriers [54, 30,

77]. The elimination of syntax errors may contribute to a reduction in student cognitive load,

allowing students to master computational thinking skills without needing to master syntax at the

same time [72]. While blocks-based environments have shown promise in improving learning

and perception by obviating syntax issues [89, 31], they do not currently address syntax

challenges students must ultimately face when transitioning to production language

17

environments. Dual-modality programming environments, such as Pencil Code and its Droplet

Editor, may be able to help bridge this understanding and help students delve into syntax by

providing blocks and text representations of the same program [8, 7]. In my dissertation work, I

investigate the use of blocks, text, and especially dual-modality programming environments for

introductory CS learners at varied stages of their education, culminating in a study to evaluate

how and if the use of dual-modality instruction in CS1 courses correlates with learning and how

said instruction affects the classroom experience.

1.1 Research Motivation

My motivation to conduct computer science education research springs from my

experience teaching in K-12 classrooms and at the college level, especially concerning

accessibility of computing education. Much of my early work focused on students’ perceptions

of programming and constructs (e.g., loops, variables, blocks). I explored how these perceptions

related to student motivations, interest in, and learning of, computer science in blocks-based

environments. As researchers began to note challenges that remained even when moving from

blocks-based to text-based environments (such as difficulty learning syntax) [134], the focus of

my work shifted to analyzing the perceptions of blocks and text.

My recent work aims to identify how to alleviate those remaining challenges (in student

perception and learning) when transitioning from blocks to text, particularly in the CS1 course

that I teach. Programming instruction has traditionally made use of text-based production

languages [124], such as C++ [1], Java [111], and Python [38]. While this has the benefit of

anchoring instruction in practical languages used in the industry, it presents difficulties for

students. Even for languages with simple structure, syntax errors and semantics are a hurdle

[136]. These language challenges are coupled with learning computational thinking and basic

computer science theory, which compounds cognitive load in early CS instruction [72, 87].

18

Blocks-based languages are also now frequently used to teach computing in K-12

classrooms, so many students enter early programming courses with blocks-based experience

(Figure 1-1) [10]. However, research accounts suggest that, even when starting in blocks, some

students nevertheless struggle with the same syntax challenges of text-based languages as

learners who begin learning in text [74]. In particular, students who move from blocks to text

have noted the disparity in difficulty between some blocks-based environments and text-based

languages [74]; my early work (outlined in later sections) provides evidence that students who

move from blocks directly to text perceive text-based programming as more frustrating than

those who work only in text from the start. Student frustration may also stem from an inability to

connect blocks constructs and their text counterparts.

Dual-modality block-text systems, offering both text and blocks-based representations,

were developed to provide a connection for students between blocks-based representations

common in learning environments and text used in production languages [7]. These

environments offer promise in that they may be able to help students overcome syntax challenges

and reinforce semantics when moving between blocks-based and text-based representations. By

linking textual and blocks-based modes of the same language, dual-modality blocks-text systems

may facilitate chunking and abstraction in text [71] by visually nesting code blocks, such as

function or condition constructs.

Figure 1-1. “Hello world!” program in Scratch (blocks-based) and C (text-based).

int main()
{
 printf("Hello world!");
 return EXIT_SUCCESS;
}

19

1.2 Research Opportunities

Dual-modality programming environments are relatively new developments and there is

limited research into their effectiveness and connection to learning, with only a small number of

studies conducted, and many of those on a small scale [136, 134, 9]. In particular, David Bau’s

work with Pencil Code – an educational, web-based programming platform – studied how

students use bidirectional dual-modality programming environments [9]. Bau conducted a study

with eight public middle school students across four after-school sessions who had no prior

programming experience. Students were permitted to freely use blocks and text modes. While on

the first day, all students used blocks most of the time, they progressed to using text more often

each day. By the last day, they were working in text 95% of the time, of their own volition. It is

possible that this transition occurred because students became more confident working in text,

suggesting that they no longer perceived text as intimidating. While Bau’s work did not directly

address perception or learning, it did offer insight by providing evidence that suggested the

students became more accustomed to text representations in dual-modality programming

environments.

David Weintrop’s is among the most comprehensive body of work on the subject of dual-

modality programming environments [136, 134]; he studied students moving from dual-modality

programming environments to text-only development. Weintrop’s study was conducted over the

course of a year with 90 students enrolled in a public high school’s introductory programming

class. Weintrop developed mechanisms – assessments, surveys, and tool log files – to measure

student attitudes, perceptions, and conceptual understanding in blocks and text modes. His work

also compared how student experiences differ by starting in pure-text, pure-blocks, and dual-

modality programming environments before moving to pure-text environments. Weintrop’s

studies suggest that dual-modality programming environments provide some of the affordances

20

of both blocks and text – they helped foster confidence in students (like blocks) but are also

perceived as authentic programming experiences (like text languages). The dual-modality

programming environment used a different language (JavaScript) than the development in pure

text (Java) [134] due to the curricular requirement to teach in Java and tool limitations (which

were only available at the time in JavaScript and CoffeeScript variants).

These important studies open new questions and opportunities for research. It is an open

question as to whether changing languages in addition to changing environment modes–as was

done in Weintrop’s study–may constitute a significantly higher cognitive load [118] than merely

transitioning from a dual-modality programming environment to a text-based one. It may also

inhibit transfer [126], as the differences between the languages could constitute farther transfer

[6] in comparison to working within the same language, but merely a different environment. As

blocks-based languages are now frequently used to teach computing in K-12 classrooms [10], an

evaluation of dual-modality programming environments–and in what ways they provide an

effective bridge to text–is particularly useful at the college level, where most students first

encounter textual languages.

1.3 Research Questions & Hypotheses

Previous work studying dual-modality and multimodal environments opened new

questions to explore regarding their potential use and place in education which have explored as

part of this dissertation. Specifically, my work addresses the following open questions in the

literature:

RQ1. How do students perform in code reading and writing after learning with

dual-modality instruction, as compared to students learning with traditional (text-based)

approaches to instruction in CS1 courses? Learners progress through multiple stages of

development as they grow via problem solving practice to eventually become experts [71]. The

21

benefits of dual-modality compared to pure-text environments are likely to differ depending on

the student’s current state of cognitive development. Some research has been done to evaluate

student perceptions and patterns in classrooms using dual-modality programming environments

[134]; in my own work with middle school students, those who worked in dual-modality

programming environments held positive perceptions of text more often than those who moved

straight from blocks to text [14]. However, no comparative analysis of learning outcomes as

compared to traditional (text-based) environments has been done. Examining how dual-modality

instruction connected to student cognitive development, and in what conditions, would help

advance early computer science instruction.

RQ2. How does prior programming experience affect students learning in dual-

modality instruction as compared to students learning in traditional (text-based)

approaches to instruction in CS1 courses? Students in early computer science courses are a

diverse population with different experiences. Some have prior text experience programming,

some have worked in blocks, and others have none. In my early research, students with prior

programming experience more frequently held nuanced perceptions of programming compared

those who had none [15]. Short of offering completely separate or tailored instruction for each

student, introductory courses must find effective ways of serving all of these populations.

Identifying how these environments can support learning and how that support might differ

based on prior experience can help instructors and researchers improve student experiences. By

helping instructors and researchers tailor tools and instruction to students with different varied

programming backgrounds, we can create development-appropriate experiences for students to

engage with programming and computer science content to build their skills and knowledge.

22

RQ3. What are student perceptions of dual-modality programming environments

and instructional approaches, and how do they change over time, in the context of a CS1

course? There are reports in study interviews that suggest some students perceive text languages

as hard and intimidating [54]. Blocks-based environments have shown promise in alleviating the

syntax challenges when learning programming concepts [133], but some students who work in

blocks continue to struggle with negative perceptions when they move to text [74]. My early

work showed that some students who move from blocks directly to text find the experience

frustrating [14]. If dual-modality programming environments alleviate these negative

perceptions, they may contribute to improved motivation and confidence, which have been

shown to improve retention within the discipline [80]. Identifying how the student and instructor

experience change when using dual-modality instruction would provide guidance for instructors

considering their use in the classroom.

1.4 Overview of Work

My dissertation work aims to identify how dual-modality (blocks-to-text) learning

environments support computer science instruction, how learning outcomes change based on

prior programming experience, and in what ways they affect the classroom learning experience.

Research to investigate the efficacy of dual-modality programming environments would be a

valuable contribution to computer science education because, if it can be shown that they are

effective in helping students learn computer science, they can be used to bridge from blocks-

based learning environments—which provide helpful scaffolding for novices—to production

languages which are used in research and industry [78, 81]. My work seeks to provide the tools

to facilitate use of dual-modality programming environments, an empirical study of how they

support learning, and evidence of their effectiveness within a classroom setting. To measure

support of learning in dual-modality programming environments:

23

• I have developed a general-purpose Java language IDE plugin providing blocks-to-text
transition in real time (and vice versa) based on Pencil Code’s Droplet editor;

• I have constructed custom dual-mode representation curricula materials with text and
blocks representations, for use in UF’s CS1 course; and

• I have conducted a study in which I collected survey responses and assessment data from
a baseline group taught using traditional, text-based approaches to instruction in UF’s
CS1 course, and separately an intervention group using dual-modality tools and
instruction in a different semester of the same CS1 course.

My contributions include a) an analysis of dual-modality tools and curricula and how

they support the learning of computing concepts; b) a dual-modality blocks-to-text IntelliJ IDEA

plugin for the Java language; and c) analysis of student perceptions of dual-modality instruction

and the classroom experience from my perspective as an instructor implementing the use of dual-

modality tools and instruction in an introductory CS college classroom.

The first part of this dissertation describes the relevant background (Chapter 2). This is

followed by three descriptions of three related but distinct studies – perceptions of programming

(Chapter 3), perceptions of dual-modality programming environments (Chapter 4), and learning

in dual-modality programming environments (Chapter 5). The final section describes my

findings (Chapter 6), work timeline (Chapter 7), identifies my contributions (Chapter 8), and

ends with a conclusion (Chapter 9) establishing how my work fits into the body of literature

within computing education.

24

CHAPTER 2
BACKGROUND

Computer science education research is built upon a fusion of general educational theory

with computer-science-specific practice and research. In this section I outline the background

work which builds upon traditional educational theory to develop CS-specific approaches and

tools.

2.1 Learning to Program

Learning to program requires concurrent development of multiple skills. In addition to

general problem solving and computational thinking competency, students must also learn

theory. At the same time, students must evolve through the stages of expertise development –

from seeing programs as a black box to advanced chunking and abstraction [71]. These abilities

are distinct and each carries its own cognitive load—that is, mental effort in working memory

required when solving problems [118, 95]. Programming has also historically been taught using

text-based languages, meaning those challenges specifically associated with learning syntax

often surface in early programming instruction. Additionally, in order to improve the efficacy of

programming instruction, it is helpful to have measurement instruments to identify if and to what

degree learning has taken place [117]. This section identifies the general challenges of learning

to program, as well as those specific to text-based instruction, and describes the development of

concept inventory instruments that can be used to assess learning in programming.

2.1.1 Language Challenges

Text languages, which are commonplace in industry and college education, present

challenges to the novice programmer with respect to syntax and semantics. This section

addresses these challenges from the perspective of the development stages that learners go

through as they progress from novice to expert.

25

2.1.1.1 Syntax

Language syntax has been recognized as a barrier students face when learning computer

science [72]. McIver and Conway developed the GRAIL language in an attempt to minimize

syntax errors; the main goals were to maximize readability and minimize unproductive errors

[86]. In a follow-up, McIver studied students using GRAIL and LOGO to compare error rates

[85]. Participants in this study were provided with development environments that were

identical, with only the languages differing; the participants were given a series of eight

exercises to complete. When participants attempted to run their programs, a snapshot of the

program text was captured and stored, and program errors were then analyzed and split into

syntax errors (such as use of an incorrect keyword) and logic errors (such as an algorithm with

incorrect steps). McIver found that students using GRAIL—designed to minimize syntax

problems—had not only a lower number of syntax errors, but also a lower number of logic

errors, suggesting that students who face fewer syntax challenges can reduce their logical errors

as a result.

Later, Ko et al. identified syntax as a contributing factor in four of six learning barriers

they examined within programming systems [61]. They found that identifying the right interface

for a task—such as when a user knows what task to accomplish but cannot determine (select) the

correct construct—created selection barriers. For example, a user in a simulation environment

may know that a task requires moving a character to a particular location on the screen but may

have difficulty identifying which syntax will accomplish that goal. As construct names / text are

not necessarily intuitively tied to what they do, syntax challenges can act as use barriers – even

if a user knows that an “if” statement provides conditional execution, they may not be able to

properly construct the conditional expression. Difficulty in knowing which constructs can

connect to and work with one another establish coordination barriers, such as trying to break out

26

of a looping expression using a “switch” statement (which cannot be done in many languages);

and misassembly of constructs can result in difficulty understanding why a program does or does

not do something (understanding barriers) – a user who misunderstands operator precedence

may miscalculate a value by arranging the operators incorrectly.

2.1.1.2 Semantics

In addition to unique syntax, each programming language construct has specific

semantics – the meaning of the construct. Deciphering this meaning requires an understanding

not only of the syntax of the language, but also the overall context of the construct within a block

of code. Programmers at concrete and formal operational stages of reasoning development, when

reading code, perceive text as a composition of constructs using an internal mental model of

those constructs – they chunk out blocks of code and summarize their meaning [71]. Students in

the preoperational stage, by contrast, see lines of code as individual elements, rather than as

abstract chunks; this increases their cognitive load and limits their ability to reason abstractly

[71]. Ko’s work also noted that semantics were a key aspect of two of the six learning barriers,

specifically use barriers (such as using the wrong parameters) and coordination barriers (e.g.,

misunderstanding how constructs interact with one another) mentioned previously [61].

Semantics also play a critical role in debugging, as practitioners must read, trace, and develop

abstract models of sections of code [2].

Taken together, syntax and semantic challenges represent a potentially significant hurdle

for students to overcome. Further exploration of the relationship between syntax / constructs and

perceptions of difficulty and intimidation could help researchers and teachers address those

negative perceptions that may impact student interest and learning.

27

2.1.1.3 Perceptions

Text-based languages, especially production languages, have been noted as presenting

perception-based challenges; the literature suggests that text-based languages can be

intimidating, especially for women [12]. Begel and Klopfer, in developing StarLogo TNG,

conducted focus groups to identify the strengths and weaknesses of the previous and new

platforms; they found that women and girls consistently felt intimidated by (text-based)

programming languages, who viewed them as male-oriented [12]. This may impact future

motivations to study computer science [59]. Results also suggest that text-based languages suffer

from association with “uninteresting” tasks [134]. Association with uninteresting / boring /

“uncool” work tasks has also been implicated in limiting motivation among students in minority

populations [37]. Visual languages attempt to address many of these issues by making the

environments more inviting and approachable and by incorporating games, simulation, and

multimedia [107, 54, 104].

2.1.2 Developing Expertise

Early attempts to understand development of programming skills followed the

constructivist / Piagetian tradition [96]. In this framework, students learn by constructing their

own knowledge via assimilation (bringing new information into existing frameworks) and

accommodation (reframing mental representation to match new experiences). The Piagetian

framework, however, is closely tied to mental development and age-based maturity [20]. In

Piaget’s framework, the sensorimotor stage encompasses infancy (through age of 2) and is

characterized by a lack of internalized thinking, while the preoperational stage is described as

intuitive (rather than logical) and lasts until the age of 7. In the concrete operational stage

(through age 11), children apply logic, but only to their concrete inputs; finally, in the formal

operational stage (from age 11), children can reason fully in the abstract. Lister instead proposed

28

applying the Neo-Piagetian framework – which decouples age and maturity from development of

skills – to account for cognitive development in the domain of programming [71]. Lister

proposed four stages of reasoning development in programming within this framework:

sensorimotor – knowing programs produce a result, but not why, preoperational – understanding

lines of code, concrete operational – reasoning about familiar, real-world situations, and formal

operational – reasoning about unfamiliar, hypothetical situations. This framework is supported

by empirical evidence from Corney et al [32] and think aloud studies by Teague et al [120]. In

this section I briefly summarize each stage as it relates to programming skill development.

It is established in psychology literature that humans have limited capacity in their short-

term or working memory, as argued by Miller in 1956 [90]. In order to cope with these

limitations, experts employ chunking as a mechanism to recall information and ideas [45].

Information is broken into chunks which are stored in long-term memory; these chunks can be

recalled as a single concept in working memory, reducing the number of unique ideas that must

be in the working memory at a particular moment in time, and thereby reducing cognitive load

[45]. As such, the development of chunking and abstraction methods is tied intimately with the

evolution of advanced stages in the Neo-Piagetian framework of development.

2.1.2.1 Sensorimotor

In the sensorimotor stage, students see programming as a “black box” – they know the

code produces a result but do not see the executing program as a sequence of instructions on a

machine. They lack conceptual understanding of constructs and programs, even at a definitional

level. Lister (and later Corney et al) identified students in this stage as those who could not read

code and trace its execution with at least 50% accuracy [71, 32]. Students in this stage, lacking

an understanding of the constructs themselves, are unable to engage in abstraction.

29

2.1.2.2 Preoperational

Students in the preoperational stage understand the function of individual lines of code.

They understand the deterministic nature of computer programs functionally and conceptually –

that is, they understand the definition of constructs – but often cannot summarize sections of

code to determine overall meaning or function. According to Lister’s framework [71], these

students can accurately read code and trace its execution with at least 50% accuracy but struggle

to relate the function of lines of codes with respect to one another, to explain what a section of

code does, or to develop diagrams describing the function of code. They may be able to write

simple programs but cannot meaningfully think abstractly about programs.

2.1.2.3 Concrete-operational

Concrete operational reasoning requires the ability to engage in abstraction and to

understand the meaning of sections of code as they relate to concrete and familiar situations.

Students in this stage of development can read, trace, and write code. They can also engage in

abstract thinking about programs, explain blocks of code, and draw diagrams describing code,

but are restricted to those situations with which they have experience – they typically cannot

abstract away solutions and apply them to distantly related problems – i.e., apply them to a new

task. Notably, the McCracken working group identified abstraction as a key challenge students

continue to struggle with at the end of most introductory computer science (CS1) courses [84].

Being able to break code into sections, and then evaluate the function of that code as a whole –

rather than merely tracing code execution – is a fundamental distinction between preoperational

and concrete operational development stages. This chunking mechanism facilitates abstraction of

code into ideas that do not require line-by-line tracing [71]. Lister also argued that students in

this stage understand three key properties – reversing, conservation, and transitive inference

[71]:

30

• reversing – computational operations can be “undone”; e.g. after shifting items in a list
to the left, the operation can be reserved by shifting the same items in the list to the right.

• conservation – equivalence of code across transformations that maintain the
specification (targeted task); e.g., equivalence of two programs that find a minimum
value in a set of values.

• transitive inference – relationships in data (often math); e.g., if a program organizes data
to guarantee that x > y, and separately that y > z, then it also organizes the data such that
x > z.

2.1.2.4 Formal operational

As the most developed stage, formal operational reasoning is, in the words of Corney et

al, “what competent programmers do, and what we’d like our students to do” [32]. These

students can read, trace, and write code; they understand the constructs conceptually; and they

can reason abstractly about programs. Lister described these students, based on the work of the

McCracken working group, as capable of engaging in abstraction and deconstruction in order to

develop solutions and iterate on them [71, 84]. In addition to being able to reason about familiar

situations, persons at this stage of development can reason abstractly about unfamiliar ones.

2.1.2.5 Summary

The Neo-Piagetian framework suggests students progress through four stages of

development as they move from novice to expert in a field such as computer science:

sensorimotor (seeing a program as a “black box”), preoperational (understanding lines of code

and being able to trace execution), concrete operational (able to apply abstractions of solutions

in similar situations), and formal operational (able to apply abstractions of solutions to

unfamiliar situations). Research has suggested that while most students progress beyond

sensorimotor levels in CS1 courses [73], the majority are at preoperational or concrete

operational stages (with most showing a limited degree of concrete operational thinking) [32].

31

Prior research provides clues as to intervention strategies that may be applicable when

helping students progress in the development stages. Code tracing has been identified as a key

skill differentiating sensorimotor and preoperational stages of development, while abstraction is

noted as critical to concrete and formal operational stages. Evidence suggests that techniques

such as lightweight sketching – stepping through instructions while using a written memory

table to track variable values (rather than trying to keep them memorized) – helps students learn

to read code and trace through programs [138]. In his consideration of abstraction in computing

instruction, Kramer suggested abstractions could be effectively taught by building on the work of

Huitt and Hummel [55] - namely, by having students explore hypothetical questions,

encouraging them to explain their problem-solving process, and by approaching instruction from

a conceptual (rather than fact based) perspective [68].

2.2 Programming Assessment

Several approaches can be used to evaluate student learning in technical fields, including

examination of artifacts created by students and formal assessments [52, 70]. Standardized

assessment instruments, if developed in a way that makes strong arguments for their validity and

reliability, can provide compelling evidence of the effectiveness of approaches to instruction

[122]. It is also important to be able to identify the validity of an instrument within a specific

context by analyzing questions on an assessment individually and collectively [123]. This section

identifies key aspects of learning assessment and instruments used for this purpose.

2.2.1 Concept Inventories

A concept inventory is one type of instrument that can be used to measure competency.

Tew and Guzdial proposed a language independent assessment of CS1 concepts [123]. Tew and

Guzdial proposed a multi-step process to define the test’s content and verify its validity and

reliability. Tew later developed the Foundational CS1 (FCS1) Assessment to evaluate basic

32

computer science competency in a language independent manner [122]. The FCS1 is made up of

multiple-choice questions that are categorized as definitional, tracing, and code-completion

questions. Content of the exam was defined by an examination of topics from textbooks used in

CS1 courses and ACM/IEEE guidelines. The topics covered by the test include variables,

operators, program control, arrays, and recursion. Tew conducted three separate studies to verify

programming language independence [122].

Building on the results of the work by Tew and later the 2013 ITiCSE working group

under Utting, Parker and Guzdial developed an isomorphic version of the FCS1 in order to

expand on the instruments available to the research community [98]. Isomorphic variants of

questions are developed by changing variables and answer choices but keeping the topical area

and style consistent with the original [98]. This new instrument, the Second CS1 Assessment

(SCS1), was developed to mitigate the risk of saturation of any one assessment (and any impact

on its validity). In a study with 183 participants, Parker and Guzdial found a strong correlation

between participant scores on the FCS1 and the SCS1, which were given to participants one

week apart from one another, and argued on this basis that the SCS1 is valid.

It is notable that both the FCS1 and SCS1 questions are, on average, considered very

difficult, and not all questions provide the same level of discrimination (Table 2-1). Most

questions on the assessment (22 of 27) were answered correctly by less than 50% of the

participants, and none of the questions were considered easy (85%-100% answering correctly)

[98]. There were also limitations with respect to discrimination quality of questions, with 7 of 27

questions considered to be poor discriminators (discrimination factor of less than 0.1), 15 of 27

considered fair discriminators (factor of 0.1-0.3), and only 5 of 27 considered good

discriminators (factor greater than 0.3). Luckily, these limitations can be addressed, depending

33

on the circumstance. While the SCS1’s difficulty poses challenges when measuring lower levels

of performance, this difficulty also means that the assessment has a higher ceiling – i.e., there is

more “room” for high performance to be measured. In addition, the majority of the questions (20

of 27) provide fair or better discrimination.

Table 2-1. Questions on SCS1 by Discrimination Factor & Difficulty (Parker & Guzdial, 2016)
Discrimination Factor Hard (< 50%) Medium (50% - 80% Easy (85%+) Total
Poor (<0.1) 7 0 0 Data
Fair (0.1-0.3) 14 1 0 Data
Good (0.3+) 1 4 0 Data
Total 22 5 0 Data

2.2.2 Item Response Theory

Item response theory (IRT) is a common way that an argument for the reliability of an

instrument can be made. It is rooted in the probability that a person of a certain ability level will

score correctly on a particular item on an instrument (such as a question on a test) based on a

response curve [5]. IRT is used around the world for large-scale assessments, including

extensively in research and use by Educational Testing Service (ETS), which develops and

administers the SAT, GRE, and AP examinations [25]. Two commonly used IRT models are

one-parameter (1PL/Rasch) and two-parameter (2PL) logistical models. IRT can be applied to a

set of data via item analysis. An item analysis can be performed on questions to identify the

difficulty parameter of a question and, if a multi-parameter logistic model is used, a

discrimination parameter (which measures how well an item discriminates between those of

higher and lower ability – also called a slope parameter) [101].

Sudol and Studer presented one approach to item analysis of a set of response samples

using the R language. Their work allows researchers to easily build graph visualizations of

difficulty and discrimination on a per-item basis [115]. Sudol and Studer also described several

34

item curves; these graphs plot ability vs probability, where mean student ability is zero. First

among the described curves is the Standard Item Characteristic Curve (Figure 2-1). They

suggested that items (questions) that best discriminate among average participants mirror this

graph. These questions have a steep and positive slope at zero in ability, indicating that

performance increases with ability. Most performance difference is within one standard deviation

from the mean in such questions. They also discussed a Guttman Item curve (Figure 2-2a), which

is seen when measuring knowledge that is likely recall-based or when there is poor item fit, and

an Easy Item curve (Figure 2-2b), where most participants – even those with low ability –

perform well. Sudol and Studer also described problematic curves. These include Linear Items

(Figure 2-2c), which may indicate mixing of multiple concepts into a question – a violation of

the assumptions of the model – and possibly other problems, and Descending Curves (Figure 2-

2d), which indicate an inverse relationship between performance and ability. Using Item

Analysis, instruments such as concept inventories can be evaluated for reliability and validity

with different populations.

Figure 2-1. Standard Item Curve. (Sudol, 2010).

35

Figure 2-2. Guttman (a), Easy (b), Linear (c), & Descending (d) Curves (Sudol, 2010).

2.3 Visual Languages & Environments

In addition to providing a pedagogical framework and methods of measurement,

instructional tools and environments can help facilitate learning in computer science and other

fields. To address the challenges of text-based languages for novices and provide scaffolding,

visual and (especially blocks-based) languages have been in development that have shown

promise in helping more students learn computer science concepts[31, 34]. The earliest of these

are graph systems, which evolved from flow charts and diagrams, and were intended to be

accessible to non-programmers [56, 83]. Later systems integrated simulations and were rooted

in the constructionist philosophy; they intentionally provided an area for play and engagement

with learning as an explicit target [96]. Modern blocks-based languages incorporated the ideas

of these earlier systems, but also added additional scaffolding to facilitate educational goals

(d)

(c)

36

[54]. These blocks-based environments usually use colorful palettes to create an approachable

environment for novices of computer science and denote semantic roles (such as control or

statement blocks). They also often use visual and/or audible cues (such as puzzle-piece

connectors and clicks) to convey construct connections and semantics [54].

2.3.1 Development of Visual Programming Environments

Visual environments and representations of algorithms were inspired by the desire to

make programming more accessible and easier to understand [54, 56, 83]. Modern visual

environments aim to decouple syntax from algorithmic thinking (through the use of visual

constructs that snap together), reduce intimidating perception (through friendly color schemes

and recognizable shapes), and introduce interesting functionality to boost motivation (via

multimedia integration) [77, 54, 28]. This section evaluates the historical motivations of these

visual languages—many related to the challenges of text-based instruction—and examines their

design, application, and evaluation. It also considers their evolution over time, evaluations of

their efficacy, and open questions in the literature regarding them.

2.3.1.1 Early visual programming systems

Work in visual programming environments evolved in part from visual flow charts and

diagrams, such as Prograph and Fabrik [83, 56]. These early system designs were in part meant

to create executable variants of data and control flow diagrams (a la flow charts). Graph-based

symbolic systems laid the groundwork for object- and agent-based visual simulation frameworks

as the object-oriented paradigm developed and influenced computer science research and

languages [109, 11]. These simulation environments were designed around object (agent)

manipulation and constructionist philosophy, which is based on learning through the building of

mental models over time through exploration [107, 112, 97]. KidSim and AgentSheets (Figure 2-

3) integrated spatial and temporal affordances through which agents could be created and

37

modified via grid-structured containers [108, 33]. These containers were the early precursors to

blocks-based programming systems [43].

Figure 2-3. Early version of AgentSheets (A. Repenning) [107].

2.3.1.2 Blocks-based interface development

At MIT, systems inspired by robotics were being developed with a focus on accessibility

to wider audiences. These eventually gave birth to blocks-based programming environments,

beginning with LogoBlocks. LogoBlocks (Figure 2-4) is a puzzle-style, blocks-based

programming environment, built on the ideas of prior diagram-based and agent-based systems

[54]. LogoBlocks was based on earlier work on LEGOsheets, which itself was based on

AgentSheets [43]. LogoBlocks also was created to serve as a development environment for the

LEGO Programmable Brick [11]. LogoBlocks programs are written to be perfectly translatable

into Brick Logo, a variant of Logo used for the LEGO Programmable Brick. It was paired with a

compiler that first converted LogoBlocks programs into Brick Logo.

38

The design work in LogoBlocks focused on visual affordances and cues to facilitate

understanding. Early iterations of LogoBlocks used a grid-based model a la Agentsheets [107].

Later iterations, seeking to depart from the rigid nature of the grid-based approach, removed the

grid itself. To maintain spatial relationships between elements, visually interlocking connectors

were added. Connectors varied by block type. For example, action blocks in a sequence were

listed vertically; each action block contained an ACTION_TOP and ACTION_BOTTOM

connection point. The ACTION_TOP connector of one block could connect to the

ACTION_BOTTOM of another block. Blocks with matching (complementary) connection

points were also built to snap together (both visually and audibly) when in close proximity; this

allowed for more free form use of the blocks. To make blocks easily identifiable, each block type

had a unique color, shape, and label [54]. The latching mechanism was devised to simplify

connection of constructs and relieve students of the need to precisely place blocks on the canvas.

Figure 2-4. Blocks-Based Interfaces: LogoBlocks [54].

39

2.3.2 Contemporary Blocks-Based Environments

While work on LogoBlocks progressed, simulation-based, object-oriented

development—and work to make it more accessible to a wider audience—continued with the

Alice environment (Figure 2-5a). Alice was at first developed as a scripting environment for 3D

computer graphics for storytelling [104]. Alice focused especially on usability concerns

(principally, the law of least astonishment) for the non-programmer audience; its principal goal

was to reduce the dependency on mathematical underpinnings when working in 3D graphics

[27]. To this end, Alice abstracted hardware, graphical APIs, and linear algebra into a simplified,

“plain-language” programming interface [26]. Later work on Alice focused on its potential as a

platform for learning to program and for practicing algorithmic thinking by building and

scripting 3D worlds, as it allowed for exploration with real-time visualizations [34]. While Alice

started out as a text-scripted environment in Python, later versions converted to a blocks-based

approach to sequence commands in an object-oriented style inspired by Java [29], and as of

Alice 3, visually constructed code is perfectly translatable in Java to make transition to Java from

Alice easier [23].

Scratch [77] (Figure 2-5b), started in MIT’s Media Lab, built on the puzzle-piece-style

block constructs of LogoBlocks [54] and real-time visualizations of Alice [27]. While the

environment of Scratch was 2D (compared to Alice’s 3D environment), it incorporated many of

the usability features from both Alice and LogoBlocks to create a platform that was friendly and

accessible to children [77]. Scratch’s environment featured the same interlocking and snap-

together mechanisms developed and refined in the LogoBlocks project [54] and added the

multimedia elements from Alice [104]. Scratch’s web-centric design encouraged students to

share their creations with other users, helping users to develop a vibrant community based on

40

remixing the work of others [92]; this practice has been shown to increase interest in continuing

to program [37] and helped disadvantaged students connect as a community in local computer

clubs [76]. Scratch was also explicitly designed to include parallel execution affordances as a

main feature; the event-driven structure of the system allows multiple instruction threads to

execute concurrently, usually engaged through input or messaging between agents in the

environment [110].

Figure 2-5. a) Alice environment [104] (left) and b) Scratch environment [77] (right).

2.3.3 Efficacy of Blocks-Based Environments

Effectiveness of these environments can be measured according to different criteria and

by using a few different metrics. For example, the goal may be to see if the environment can be

an effective instructional tool; to compare the performance of students using a new environment

or language and one already in use; to prepare students for more advanced programming and

computer science coursework; or it may be some combination of these. The scaffolding provided

41

by these environments aims to reduce or eliminate syntax errors (by eliminating syntax through

the use of blocks), facilitate understanding of semantics and construct relationships (via colors

and puzzle-piece-style snapping), and improve motivation and interest (by providing multimedia

environments to work within).

2.3.3.1 Effectiveness as learning environment

In general, these tools have been used successfully to help students to learn. Studies have

provided evidence that the scaffolding provided by these environments eliminates problems with

syntax errors, allowing students to employ computational thinking, while also nurturing an

appreciation of trial-and-error approaches necessary for programming and debugging [75, 132,

94]. Some studies, particularly those with Alice, also show students developed a strong sense of

objects and their contexts within programs [31, 131]. Cooper et al. ran an experiment with a

small number of college students (N=21) identified as weak CS majors (those who had no prior

programming experience and were not prepared for calculus) to test the effectiveness of Alice as

an environment to help students learn computer science [31]. Eleven (11) students took an Alice-

based preparation course, either before or alongside CS1; ten (10) students did not and served as

the control group. The students who took the Alice-based course in addition to CS1 performed

better in the CS1 course, suggesting a prior course in Alice can help students succeed in CS1

courses. However, as the authors noted, these results may be biased by self-selection of

motivated students into the Alice course. Meerbaum-Salant et al. evaluated instruction using

Scratch to teach 9th grade boys and girls (N=46) [89]; they found that students using Scratch

improved their knowledge of computer science and programming through its use. They also

found that students internalized core CS concepts (including initialization, loops, variables, and

concurrency) and improvement in cognitive performance levels (including understanding,

applying, and creating). However, the impact was not uniform – some concepts were more

42

readily internalized than others. For example, while 75% of participants correctly answered

questions regarding conditional loops, only 52% answered correctly regarding bounded loops.

With respect to effectiveness compared to other environments, results diverge somewhat

depending on the circumstances and are mixed. Wang et al. conducted a quasi-experiment at the

high school level with two groups of students (N=166), one learning C++ and the other learning

via Alice [131]; they found that students in the Alice coursework performed slightly better

overall than those in the C++ group. However, in a study comparing students (N=154) receiving

instruction via pseudocode and those using Alice, Garlick and Çelikel found that students using

Alice performed more poorly than those learning via pseudocode [42]. It is possible that method

of instruction or differences between the C++ and pseudocode approach played a role in the

difference in results; more research may help elicit in which situations Alice and similar

environments may be helpful. Weintrop studied the difference between blocks-based and text-

based environments with two groups of students in high schools. One group started in a blocks-

based environment, while the other started with text (JavaScript or CoffeeScript); at the

midpoint, both groups changed to the Java language in text. He found that those students who

worked in the blocks-based environment outperformed the text-based group on an assessment of

algorithm construct concepts used in programming at the midpoint (before the switch to Java).

However, their scores at the end of the course—after the completion of the Java portion—were

comparable; in other words, the students were not worse off, performance-wise, for having used

the blocks-based environments.

2.3.3.2 Moving from blocks to text

While studies have shown that blocks-based environments can be effective learning tools,

some data suggest that students struggle to switch from blocks to text later. In Weintrop’s study

[134], participants starting in blocks reported statistically significant increased levels of

43

confidence from the start to just before changing to Java (the midpoint of the study), but a

statistically significant decrease in confidence in the second phase (after switching from blocks

to text). The text-condition students, however, did not show statistically different changes in

confidence over the course of the study. One possible explanation may be that, while blocks-

based environments boost morale and motivation—and possibly early learning—over time this

benefit decreases as students become more accustomed to computational thinking and thus get

less benefit from the reduced cognitive load of the blocks-based environments. It is also possible

that the motivational challenges of text-based languages impact performance in similar ways

regardless of when they are introduced (whether before or after learning fundamentals), possibly

related to perceptions of difficulty and authenticity, resulting in the same overall ability level in

participants upon completion of the entire course. Data collected during my own study with

middle school students (Section 4.3) suggests that students who start in blocks perceive text

more negatively after switching from blocks to text, unlike their counterparts who have worked

exclusively in text. The scaffolding provided by blocks-based languages is intended to address

issues related to perception and the challenges of syntax; however, more research is needed to

determine how this scaffolding impacts student learning and motivation in the long term. It is

also notable that, while Weintrop’s results showed improvement in student performance on

ability tests while in the blocks-based environments, once students moved to text, the learning

outcome advantage dissipated. While not the primary topic of this dissertation, additional study

of how switching students from blocks to text environments compares with teaching them

exclusively in text environments could help identify the impact these environments have on

learning over longer periods. This dissertation will help provide a foundation for later research

comparing purely text-based and blocks-to-text approaches to instruction.

44

2.3.3.3 Special considerations - environments are not equal

It is important to note that the blocks-based environments discussed are targeted to

different age groups. For example, while Scratch targets elementary through early high school

students, Alice was originally created to serve students at the undergraduate level, though today

it is used in K-12 classrooms [26, 75]. Design differences change the implementation of

scaffolding and structure of the language representation. For example, Scratch makes use of

brightly colored, snap-together puzzle piece blocks meant to appeal to younger children, while

Alice utilizes simple rectangular blocks in more subdued colors [77]. Likewise, Alice’s variants

employ an explicitly object-oriented data model, while Scratch’s interface is limited to a handful

of base object types (most notably sprites and backdrops) [77, 132]. The differences in

scaffolding implementation could also impact the effectiveness of the environments and the

evaluation of them. For example, Scratch uses puzzle piece affordances that help novices

associate constructs that can be used together with one another visually and audibly; Alice’s

drag-and-drop object creation mechanism reinforces the concepts of classes as blueprints and

objects as entities. Further research of these differences, and how they impact students of

different ages, could help instructors and researchers determine which features are more effective

with different age groups.

Modern blocks-based environments, like Alice and Scratch, also provide unique

affordances for some aspects of programming. For example, parallel, multithreaded

programming is a topic that is becoming more crucial with the proliferation of multicore

processors. Both Alice and Scratch provide visual, message- and event-based frameworks that

simplify multithreaded execution in a form accessible even to children. If research showed that

these approaches help students learn parallel programming more easily or quickly, teachers could

more effectively prepare students in less time. Previous studies comparing text and blocks have

45

differed; however, those studies used different text-based languages. Research comparing

different text-based languages to blocks-based environments, in the same situation, could help

determine if language played a role. Scaffolding to smooth the transition from blocks to text may

also reduce the friction of changing to text-based languages. Further research could help

determine if this is the case. Knowing this could help the teaching community identify the best

approach for introductory programming.

Table 2-2. Summary of Visual Environment Affordances
Environment Type Predecessors Snap Color Shape Icon
Prograph Graph [83] - No No Yes Yes
Fabrik Graph [56] - No No Yes Yes
AgentSheets Grid [107] - No Yes No Yes
KidSim Grid [112] - No No No Yes
LEGOSheets Grid [43] AgentSheets, Logo [43] No Yes No Yes
LogoBlocks Blocks [11] BrickLogo [11] Yes Yes Yes No
Alice 2.0, 3.0 Blocks [132, 35] Alice 1.0 No Yes No No
Storytelling Alice Blocks [59] Alice 2.0 No Yes No No
Scratch 1.0, 2.0 Blocks [77] LogoBlocks [77] Yes Yes Yes Part
Scratch Jr Blocks [105] Scratch 2.0 [105] Yes Yes Yes Yes

2.4 Multi-Modal Environments

Another approach to introducing students to programming is to use multimodal

development environments—that is, environments that use different types of representations

(such as blocks and text) to represent code and/or relationships. For purposes of this dissertation,

I will refer to hybrid modality environments as those where different representations are used

for different types of information and/or different relationships, and dual-modality

programming environments as those which provide multiple representations of the same

information and/or relationships.

2.4.1 Hybrid Modality Environments

The earliest multimodal environments used different representations distinctly to

represent different types of information (i.e., hybrid modality). BlueJ (Figure 2-6a), an evolution

46

of the Blue Environment [62], mixes graphical representations of class and object relationships

in the Java language with text representations of their definitions [63]. BlueJ is centered on an

objects-first design; early on it distinguishes between classes, which are designed as templates,

and objects, which must be explicitly, and visually, created from those classes [67]. The classes

and their relationships—including inheritance—are displayed using diagrams, similar to earlier

systems like Prograph and Fabrik [83, 56]. Objects, meanwhile, are displayed in a separate object

bench to distinguish them from the classes. Users can edit the code for a class by “opening” the

class, which displays the class’s text in an editor. Users can also run methods for testing purposes

and inspect object values through a context menu.

Preliminary studies using BlueJ have suggested it holds promise for students in computer

science courses. Hagan and Markham surveyed 120 college students who used BlueJ asking

them to answer the question “How much does BlueJ help you learn Java programming?” on a

scale of 1 to 7 (1 being “a great deal” and 7 being “very little”); 62% of respondents answered

“1”, “2”, or “3” (more helpful), 16% answered “4” (neutral), and only 22% answered “5,”,6”, or

“7” (less helpful) [50]. In comparing students who used BlueJ for an introductory course and

those who did not, Borstler et al. found that students using BlueJ had lower dropout rates and

higher pass/fail ratios [19]. Van Haaster and Hagan surveyed students in the two earliest

computer science classes where BlueJ was optional; all students elected to use BlueJ, and their

failure rates were reduced compared to the previous two years of classes (though they noted that

the language was also different, previously having been C++) [48].

Greenfoot (Figure 2-6b) was later developed by many from the team that originally

created BlueJ; it takes its inspiration from BlueJ and Karel the Robot, a robot simulator for

learning programming [63, 51, 103]. Similar to BlueJ, Greenfoot is based on an objects-early

47

model. It is meant to address younger populations—including high school students—and to

combine the simplicity of microworlds (in the vein of Karel) with the flexibility and object

modeling of BlueJ. Greenfoot uses a grid-based world similar to the one used by AgentSheets

and KidSim [107, 112]. It also carries over many features directly from BlueJ, including

class/object distinctions, direct method invocation, and object inspection [63]. The combination

of the world model and object/class visualization model allows for complex development [64].

Greenfoot was designed specifically to, among other things, motivate students when

studying computing. Research has suggested working in Greenfoot may help student motivation,

though it is not clear if it has helped students learn more effectively [129, 3]. Vilner et al.

surveyed 325 students who worked in Greenfoot. Most of these students said they enjoyed using

Greenfoot, and about half said it helped them understand inheritance; however, these was no

statistical different in grades attributable to using Greenfoot [129]. Al-Bow et al. worked with

students in a high school summer camp (9th and 10 grades). These students showed

improvements in attitude, including enthusiasm and pride, and they were able to complete the

tasks in the camp [3].

Recent versions of Greenfoot have implemented frame-based editing [66]. The frame-

based editing model seeks to prevent syntax errors, as blocks do, while maintaining the

expressive nature of text valued by experts [65]. In frame-based editors, scoping is defined by

frames – which represent the boundaries of programming constructs – and which contain other

constructs. As in blocks-based environments, the constructs are delineated visually; however, in

frame-based editors, new frames are created using key combinations – such as pressing the “V”

key to create a new variable – rather than dragging and dropping of constructs from a toolbar

[66]. Generally, frame-based editors are intended to work with a keyboard workflow – and

48

therefore maintain similarity with text-based source editing – with the stated goal of being useful

to learners for a longer period than blocks-based programming environments [65].

While some initial work has indicated that students have positive perceptions of frame-

based editing environments [106], there is limited research in how the effectiveness of

multimodal environments compares to other environments, especially after moving to pure-text

environments [36]. further work would be needed to determine how these environments compare

to text- and blocks-based frameworks.

Figure 2-6. Hybrid modality environments: a) BlueJ [63] and b) Greenfoot [51].

2.4.2 Dual-Modality Programming Environments

Dual-modality programming environments provide a means to translate between

representations – usually from blocks into text or vice versa – to help students understand the

relationships between visual representations of constructs and their text-based counterparts

[134]. Some of these allow only translation from blocks to text, while others also allow text to be

49

translated into blocks (i.e., they have bidirectional translation) [7, 35]. By providing a practical

and usable environment that allows quick transition between blocks and text of the same

program semantics, these environments may be able to overcome the actual and/or perceived

difficulty of text-based languages. In addition to more clearly connecting constructs to their

syntax, these environments may provide scaffolding for students to develop skills in chunking

and abstraction [71] by “blocking” sections of text – i.e., creating blocks from the text (and

thereby associating these text constructs with a visual area). By combining the affordances of

blocks-based environments that show how constructs can be used together and how they connect,

and by showing explicitly the equivalence to text variants of the same constructs, they hold

promise in addressing coordination and understanding barriers [61]. If language difficulties and

learning barriers associated with text representations could be alleviated, students may be able to

develop competency in computing more effectively. In this section, I explore current frameworks

offering translation between blocks and text and explore open questions in the literature

regarding them.

2.4.2.1 Unidirectional translation (blocks to text)

Many environments offer one-way translation of blocks into text code. While Alice’s

early versions were text-based, visual programming (and eventually blocks-based programming)

was used in later versions. Alice 2 introduced a “code export” feature that allowed users to

export a printable HTML file [79]. Later, Alice 3 displayed a grammatically correct Java

translation of blocks in a separate window which users could turn on and off via the menu. In

addition, Alice 3 projects can be converted into a complete Java project. Dann et al. studied the

use of Alice 3’s translation features and how they impact transfer when moving to Java [83];

they found that student performance on final exams improved dramatically—from 60.8% in a

prior semester using Alice 2 to 85.0% and 81.5% in semesters using Alice 3 and Java translation

50

features. This lends credence to the notion that connecting blocks and text representations

explicitly – such as via a multi-modal environment – provides strong support for transfer of

student knowledge from blocks to text. It should be noted that final exams were not identified as

valid CS assessment instruments and that only one of the instructors taught both the old and new

versions of the course; either or both of these concerns could influence the data gathered in the

study. Some exam questions may not be measuring core computing concepts, but other related

factors – such as language- or platform-specific applications. In the same vein, different teachers

are likely to present materials in very different ways and using different approaches, potentially

impacting student learning and retention.

Another unidirectional blocks-to-text tool is Google’s Blockly library. Blockly allows

developers to build blocks-based programming editors. It provides a blocks-based development

environment that can be translated into multiple programming languages. Users of Blockly-based

applications can drag and drop blocks representing constructs to build algorithms, and these

blocks representations can be translated into syntactically correct code in text-based languages

[139]. Several languages are supported by default, including JavaScript and Python, and

additional language implementations can be added. Blockly was designed and updated based on

feedback and observations from user testing [40]. An explicit goal of Blockly’s blocks-to-text

design is to provide an “exit strategy” and also support the authenticity of the blocks

representation [40]. The design aims to facilitate movement to pure-text representations by

providing direct conversion of blocks into text in production languages. Blockly is currently in

use in several environments, including App Inventor and Code.org [139]. Wagner et al. studied

the use of App Inventor specifically in a K-12 summer camp [130]. They found that showing

51

students the blocks representation of Java using Blockly, then the text representation of the same

Java constructs, helped students understand how to build an application.

2.4.2.2 Bidirectional translation

The Pencil Code project introduced a dual-modality development editor—the Droplet

Editor—that allows users to switch between blocks-based and text-based representations of the

same program in real-time [7, 9]. A crucial difference is that, unlike one-way translation features

(like those in Alice and Blockly), Droplet is bidirectional—it can convert from blocks to text, but

also from text to blocks (Figure 2-7). This allows users to transition between blocks and text at

their own pace, as they can return to the blocks mode (or switch to text mode) at any time. Bau et

al. found that, in a small group of middle school students (N=8), use of the text-based editor

increased over time with experience, suggesting that as students became accustomed to computer

science and programming, they began using the text mode more often [9]. Later work by

Weintrop & Holbert showed that students most often switch from text back to blocks when

adding new or unfamiliar constructs [135]. Together, these findings suggest that that students

made use of the scaffolding of the blocks-based environment to reduce cognitive load for new

concepts in order to gain familiarity, but once those concepts were mastered, they moved to text.

In addition to blocks-based environments (noted above), Weintrop also tested

bidirectional environments, and in particular the JavaScript variant of Pencil Code. [134]. He

found that, like students who began in a blocks-based environment, students working in the

bidirectional dual-modality programming environment (Pencil Code) scored more highly than

those who began in the text environment [134]. Like those starting in the blocks-based

environment, those starting in the dual-modality programming environment scored about the

same at the end of the class after switching to Java [134]. However, unlike the blocks-based

environment students, the dual-modality programming environment students had an increase in

52

interest in taking computer science courses in the future after switching to text, matching the

trend in their performance, which also rose. The reason for this is an open question. It may be

evidence that students in a dual-modality programming environment experienced less of a shock

moving to the text environment, resulting in a lower negative impact on their perceptions and

performance alike. It should be noted that students in the dual-modality programming

environment had a decrease in interest in taking future courses in computer science until the

switch to Java, unlike the students working in the blocks-based environment; further study could

help researchers understand if this change in interest is related to the languages, the

programming environments, or other factors.

There are contextual considerations that may limit the impact and applicability of this

study’s results more broadly within computer science. In Pencil Code, the Droplet Editor’s use is

limited to drawing applications and animations using a turtle interface; as the study’s population

consisted of high school students, the interface may not provide sufficiently interesting material

to motivate students. Age may also be a factor; younger students may more readily take to the

blocks-based and dual-modality programming environments and view them as more authentic

than older students. Weintrop’s work in particular was also done in an environment that involved

changing languages at the midpoint of the course (as the latter half of the course was in Java,

rather than CoffeeScript or JavaScript); this required students to learn not just new syntax, but

also new control structures, potentially increasing the cognitive load on students and impacting

student perceptions and/or learning. My work, as outlined in this dissertation, has focused on

investigating how the use of dual-modality programming environments and instruction

influences perceptions of text programming as well as how such instruction supports learning in

the classroom, including work with middle-school and college-age students in a single language

53

– Python and Java, respectively. As such, my work benefits the research and education

communities by providing evidence of student perceptions and learning in other age groups and

without changing the instructional language.

Figure 2-7. Pencil Code: Blocks-based mode, text-based mode, output window [9].

Table 2-3. Summary of Multimodal Environment Affordances
Environment Type Predecessors To Text? Bi-Dir.?
Alice 2.0 Blocks

[132]
Alice 1.0 No No

Storytelling Alice Blocks [59] Alice 2.0 No No
Alice 3.0 Blocks [35] Storytelling Alice, Alice 2.0 [35] No Yes
Blockly Blocks

[139]
- No No

Pencil Code (Droplet) Dual [7] Pencil Code – Text No Yes
BlueJ Hybrid [67] Blue [63] Yes Yes
Greenfoot Hybrid [51] BlueJ, Karel [51] No Yes

54

CHAPTER 3
STUDY OF PERCEPTIONS OF PROGRAMMING

My work in the area of computer science education research has been largely shaped by

my professional experiences within the teaching field, in which I have been working for over 15

years on a full time, part time, and volunteer basis. The challenges faced by underrepresented

groups at varied age groups – from Kindergarten to the college level – first inspired me to

examine how students’ perceptions of programming and the design of different tools impact

learning and interest in computing. Eventually, my studies of perceptions led to questions about

the efficacy of learning environments and how they can be improved. As such, my early work

involved examinations of perceptions, environments, and learning measurements.

I began my work by examining perceptions of blocks-based environments (Section 3.1)

and how students move from them to text languages (Section 3.2). I wanted to explore how

children perceived programming: specifically, how do children perceive the act of

programming, what constructs do they perceive as hard or easy, and how does it differ

based on prior experience? To identify these perceptions and explore their connection to

learning, I conducted a study during a summer camp with young children in 2015 and presented

a poster at SIGCSE 2018 [15]. I also developed instruments to measure perceptions of blocks-

based constructs with elementary school students for use in the study. In addition, based on my

own teaching experience and available literature, I believed that students with experience in

blocks-based languages nevertheless sometimes struggled when moving to text environments; I

wondered, how can we help ease students into text from blocks-based environments? As

such, I submitted a position paper at IDC’s “Every Child a Coder” workshop, which focused on

bridging blocks and text representations (Summer 2015) [57].

55

3.1 Study: Construct Perceptions in Children (Summer Camp)

I conducted an initial study of programming and language construct perceptions of

elementary school students as part of a summer camp program in 2015. The purpose of this study

was to identify what role prior programming experience played in perception of the act of

programming and specific language constructs. This study’s results provided guidance for my

work focusing on blocks, text, and dual-modality programming environment analysis. I

presented the results of this study as a poster at SIGCSE [15].

3.1.1 Study Context

The study was conducted as part of a children’s summer camp program held at a

medium-sized university in the southeastern United States in 2015. Two separate week-long

summer camps on game development were conducted (one each in July and August of 2015),

eight hours each day (9AM to 5PM). During the camps, participants learned programming

through video game development and created games for about four hours per day. The summer

camps used the Scratch environment and a modified variant of Google’s CS-First curriculum for

games [140]. They also visited campus studios, heard from industry guests, and played

computational-thinking games. All activities were guided by three camp facilitators without

backgrounds in computer science who were trained for one week in the CS-First curriculum by

computer scientists. The camps were not designed around the purpose of this study; instead, I

studied how participants’ perceptions of programming changed after experiencing these camps,

which are like many other computing camps offered around the world.

3.1.2 Procedure

I recruited children to participate in the study from the camp attendees; no compensation

was provided to the children. Participants were recruited via an email that was sent to guardians

of summer camp attendees before the camp began, with IRB-approved consent forms available

56

to guardians on the first day of camp. Voluntary assent was also obtained from the children at the

beginning of the camp before the questions were asked. It was made clear to guardians and

children that participation or non-participation in the study would not impact their experiences or

opportunities during the camp. Of 51 summer camp attendees, I collected data on the responses

of 28 / 55% of the children (16 in July 2015 and 12 in August 2015). Seven participants were

female and 21 were male; 13 of 28 (46.4%) children indicated they had prior programming

experience (generally, Hour of Code [102] or Scratch [110] activities).

I collected data over two weeks about the participants’ perceptions of programming via a

series of semi-structured interview questions which I verbally administered on the first, second,

and last days of the summer camp (Table 3-1). Most interviews were audio-recorded; some

participants preferred their responses be written down. I asked participants if they had ever

programmed before and what they thought programming was on the first day, as well as their

initial impressions of programming. I asked about their opinions on Scratch programming

constructs on the second day, after they had started using them. Follow-up questions on the last

day were planned, but not asked in the July cohort due to logistical issues. In August, I also

asked questions on the last day. Specifically, I repeated questions about their impressions and

asked about their desire to program again in the future.

Table 3-1. Interview Questions by Topic
Topic Questions
Prev. Experience Have you ever programmed before?
Prog. Definition Do you know what programming is? What is it, in your own words?
Prog. Impressions Do you think programming is fun or interesting? Why do you think that?

How do you think programming can be useful to people?
Constructs What programming ideas were hard / easy / fun? Why do you think that?
Future Interest Do you want to program again in the future? Why / why not?

57

3.1.3 Qualitative Measures

Based on existing literature and my own experience teaching children programming, I

had some expectations regarding student perceptions about programming. Since children without

experience lack understanding of what programming involves [46], I thought I would see

evidence that they conceptualize programming according to results, e.g., artifacts they can see

and interact with or have learned about from peers, parents, and teachers, but not the lower-level

processes and functions involved in creating artifacts – e.g., providing instructions and

communicating with devices (Table 3-2). This would also align with the Neo-Piagetian

sensorimotor stage of development, in which learners know what an artifact is and does, but not

how it works. In contrast, I thought children with experience would have gained insight and

understanding through practice and application, allowing them to conceptualize these low-level

functions – in line with what we might expect from learners at preoperational or later cognitive

stages. If this expectation were confirmed, it would be possible to tailor instruction for children

based on experience level as their knowledge matures. Past work has shown that some constructs

are used more often than others by novices [24, 21], so I expected that perceived difficulty of

constructs would follow similar patterns. Based on my own anecdotal experience teaching young

children in the TurtleArt environment [18], students took naturally to loops, but sometimes

struggled with if-else branching, so I expected that children would identify loop-based constructs

as easier to work with than if-based ones, and vice-versa.

Table 3-2. Expectations of Perceptions based on Programming Experience
No Prior Programming Experience Prior Programming Experience
Conceptualize programming according to
results, e.g., artifacts

More mature understanding of process and
functionality

Conceptualize programming according to
what they have learned from peers, parents,
and teachers

insight & understanding gained through
personal practice & application to create
artifacts

58

3.1.4 Coding Process

Using an inductive qualitative coding approach as described by Auerbach and Silverstein

[4], my advisors and I created and assigned codes to the participants’ interview responses.

Responses to questions addressing specific constructs (blocks in Scratch) were qualitatively

coded by participant identification of the construct. Sometimes participants referred to specific

sets or subsets of constructs (e.g., “the green ones” or “the ifs”); these were assigned to set or

subset codes (e.g., “SUBSET: IF”). To validate the reliability of the code book for characterizing

the participants' interview responses, I computed interrater reliability on the second round of

coding, in which all 3 researchers qualitatively coded all responses from 33% of the August

participants. Since there were multiple raters, I used Fleiss' kappa [47]. Since each response

could have multiple codes, each possible code was transformed into a yes/no variable to compare

raters' consistency in assigning codes. Interrater reliability was computed for each question and

possible response code, and average agreement between coders was kappa = 0.8045,

characterized as substantial by typical interpretations of kappa [128].

3.1.5 Programming Definition Themes

For questions about perceptions of programming in general, codes were grouped into

themes using an inductive card-sorting approach (Table 3-3) [114]. I performed the initial card

sort on codes for the relevant questions. These themes and the codes were reviewed and

discussed by all researchers until consensus was reached. I identified themes that emerged

related to my expectations, including responses that focus on results of programming: (1)

Creation – a way to create an artifact (such as a program or media content); and (2) Helping –

aiding people or society through robots and assistive technology. I also identified themes for

responses that dealt with the process and function of programming: (3) Control – exerting control

59

over something / someone (such as a computer or robot); and (4) Communication – transfer of

messages or using an encoding medium to transfer information (such as instructions or ideas).

Table 3-3. Programming Definition Themes
Theme Description Example Response
Creation way to create an artifact “Programming is making things for a

computer”
Helping aiding people / society “It could help the elderly walk”
Control exerting control over some entity “making… any character… do

something”
Communication transfer of messages / information “It is telling the computer what to do”

3.1.6 Findings – Perceptions of Programming

Before the study, I had expected that children without prior programming experience

would perceive programming in terms of its results, and that children with prior experience

would have a more mature understanding of process and functionality. Participants were asked at

the beginning of the camp a) if they knew what programming is, and if so, to provide a

definition; and b) how programming can be useful to people. Their responses to these two

questions were then coded and combined (Table 3-4). Many with and without experience defined

programming in part by referring to creation of artifacts (67.9%, n=19) and helping people (50%,

n=14). However, few students without experience referred to communication (6.7%, n=1) or

control (13.3%, n=2); this is in contrast to students with experience, who referred in larger

numbers to communication (30.8%, n=4) and control (69.2%, n=9). This pattern matched my

expectation that children without prior experience tend to perceive programming in terms of its

results, especially of artifacts and helping people. It also provided evidence that participants with

prior programming experience perceive programming at least in part in terms of function and

process (though not to the exclusion of other ideas like creation). It also suggested that children’s

perceptions broaden to include lower-level aspects of programming as they gain experience.

60

Table 3-4 summarizes the percentage of participants whose responses fit in each theme; as

responses could have more than one theme expressed, numbers do not sum to 100%.

Table 3-4. Percentage and Number of Participant Responses by Theme
Experience? Creation Helping Communication Control
No 66.7% (10) 40.0% (6) 6.7% (1) 13.3% (2)
Yes 69.2% (9) 61.5% (8) 30.8% (4) 69.2% (9)
All 67.9% (19) 50.0% (14) 17.9% (5) 39.3% (11)

3.1.7 Findings – Perceptions of Constructs

Based on my prior experience teaching young children to program, I believed that some

control structures would be more intuitive to inexperienced children than others: specifically,

that loop-based structures would be easier and if-based branching would be harder. To explore

whether participants perceived loop-based constructs as easy compared to other constructs, on

the second day, I asked students which constructs they found easy and why. Again, I compared

participants with and without prior programming experience, and in particular I examined how

loop-based constructs compared with if-based constructs.

The 15 inexperienced participants most often identified loops (40%), simple events,

(60%), and motion (53.3%) as easy – and loops were indicated far more often than if constructs

(13.3%). It is notable that both of the students who identified if-based constructs as easy also

identified loop-based constructs as well. These results suggest that these novices found loop-

based constructs – particularly the variants found in Scratch – easier to learn and work with than

other constructs. By comparison, among the 13 participants with prior programming experience,

a majority identified both loop-based (53.8%, n=7) and if-based (53.8%, n=7) constructs as easy,

along with events (61.5%, n=8), motion (53.8%, n=7), and visuals (“Looks” blocks in Scratch)

(46.2%, n=6). This suggested that the difference in perception of these control structures

subsides with experience. Table 3-5 shows the percentage of participants who identified

61

constructs as easy within the most commonly mentioned sets; again, participants could identify

more than one construct in a response.

I also asked participants which constructs they found hard and why on the second day.

Table 3-6 shows the percentage of participants who identified at least one construct as difficult

within the most commonly mentioned sets. Among participants without prior experience, only

13.3% (n=2) identified loop-based constructs as hard. Other construct types were noted much

more frequently – particularly coordinate-based motion (26.7%, n=4) and sensing (26.7%, n=4)

blocks. For the 13 participants with prior experience, other construct types were more often

identified – specifically, broadcast (23.1%, n=3) and events (30.8%, n=4).

Table 3-5. Percentage of Participants Saying Constructs EASY for N > 4 (14.3%)
Exp? If Loop Color Events Motion Visuals Sound
No 13.3% (2) 40.0% (6) 13.3% (2) 60.0% (9) 53.3% (8) 20.0% (3) 26.7% (4)
Yes 53.8% (7) 53.8% (7) 30.8% (4) 61.5% (8) 53.8% (7) 46.2% (6) 30.8% (4)
All 32.1% (9) 46.4% (14) 21.4% (6) 60.7% (17) 53.6% (16) 32.1% (9) 28.6% (8)

Table 3-6. Percentage of Participants Saying Constructs HARD for N > 4 (14.3%), & If / Loop
Exp? If Loop Coord. Events Broadcast Sensing
No 13.3% (2) 6.7% (1) 26.7% (4) 6.7% (1) 13.3% (2) 26.7% (4)
Yes 7.7% (1) 15.4% (2) 7.7% (1) 30.8% (4) 23.1% (3) 7.7% (1)
All 10.7% (3) 10.7% (3) 17.9% (5) 17.9% (5) 17.9% (5) 17.9% (5)

3.1.8 Influence on Course of Research

The constructs students identified as easy and hard differed – particularly within control

structures. How students perceive constructs may be dependent in part on the representation of

those constructs – particularly whether they are presented as blocks or text – rather than an

inherent feature of the construct. As the students programmed in Scratch, all constructs were

blocks-based; if constructs were presented to students as text, they may have perceived them

differently. In addition, it was notable that some students also differentiated between

62

“programming” and “coding” in interviews; for example, one participant said, “I know how to

code, but I don't know how to program”. The direction of my work shifted based on the results of

this study; in the next phase of my research, I began to focus on the differences between blocks

and text representations, the perceptions users held of each, how they interact with learning, and

how we might develop a bridge to help students move from blocks to traditional text

representations used in industry.

3.2 Position Paper: Bridging Blocks and Text

Early in my work I presented a position paper at a workshop on computer science

education at the ACM International Conference on Interaction Design and Children [57]. In that

work, I posited that, while blocks-based learning tools help facilitate the learning of computer

science concepts at younger ages, students encounter challenges translating their experiences into

production languages. Blocks-based learning tools and environments had made significant gains

in engaging a younger audience and making programming more accessible by incorporating

visual elements, drag-and-drop program construction, and media-rich environments, but while

platforms were friendly for young children, they were largely built as sandboxes and at the time

used languages that were environment-specific [77, 28]. I argued that, although these tools had

shown great promise in exposing younger audiences to computer science and computational

thinking concepts, what was still lacking was that bridge from the simplified and abstracted

languages and tools to more advanced, complex environments. These more advanced

environments had shown success at the high school and college levels in transitioning students to

production programming languages used by programmers today such as Java and the more

complex IDE tools used for these languages (e.g., Eclipse, Figure 3-1). A bridge would facilitate

transfer of knowledge and skill from the early educational environments to an applied one while

remaining accessible. I had further argued that this bridge could be explicit scaffolding that

63

facilitates movement from existing educational environments to production languages, or a

completely new environment developed explicitly to grow with students as their cognitive

abilities mature. Thus, in this paper [57] I proposed that the robust and effective development of

such a bridge presents a key research challenge of introducing programming to younger

audiences. This research challenge laid the foundation for the next phase of my research, namely,

dual modality programming environments, which I anticipated might serve as that bridge from

blocks to text representations.

Figure 3-1. Eclipse IDE [141]

64

CHAPTER 4
STUDY OF DUAL-MODALITY PROGRAMMING ENVIRONMENTS

Based on my position paper and work during the summer camp, my work evolved to

focus on dual-modality programming environments, which I anticipated could help bridge the

gap between blocks and text representations. I developed dual modality representation tools in

the form of Pencil Code’s Python variant (Section 4.1), developed a custom assessment

instrument using blocks and text representations (Section 4.2), and explored dual-modality

programming environments from a perception and learning perspective using the Python variant

of Pencil Code (Section 4.3). This work was principally centered on work with middle school

students working in dual-modality programming environments, as by this age students have

more developed reading and writing skills that provide the foundations for text-based

programming. In this phase of my work, I conducted one study with middle school students

(Spring 2017), presented a paper and poster at ICER’s doctoral consortium (Summer 2017) [13],

and presented a paper at VL/HCC (Fall 2019) [14] based on the middle school study. This work

also provided the foundation for my final study at the college level.

4.1 Development: Python Variant of Pencil Code

Pencil Code, discussed earlier, is a turtle-based web application inspired by LOGO and

blocks-based environments. Its Droplet Editor allows users to switch between blocks-based and

text-based representations of the same program in real-time [9, 7]. The first version of Pencil

Code allowed users to write programs in CoffeeScript; later, JavaScript was also added.

However, JavaScript’s syntax can be very complex, and CoffeeScript has limited use in industry

and academia. By comparison, Python has been recognized as a language that can help students

learn computer science in early courses [8] which also is in common production use. In order to

explore dual-modality programming environments in the context of learning and perceptions of

65

programming, I needed a dual-modality programming environment that would avoid perceptions

of inauthenticity of the text-based programming language. I integrated a Python runtime into

Pencil Code in order to make available a language in common industry use – compared to

CoffeeScript – while maintaining low-syntax threshold – compared to JavaScript. After

developing this tool, I used it when running a study with middle school students (detailed later in

this chapter). Pencil Code’s Python variant is available for download via GitHub:

https://github.com/cacticouncil/pencilcode.

4.1.1 Description of Work

The work to add Python to Pencil Code involved several steps:

Integration of a Python interpreter and runtime into Pencil Code’s web application
Writing Python routines for all language features and functions present in Pencil Code
Developing a “palette” that mapped Python language constructs to block representations

Existing work on Droplet (Pencil Code’s editor) provided Python parsing without

integration of an additional language parser, allowing me to focus on the runtime and

representation. The architecture of Pencil Code’s Python variant is shown in Figure 4-1; Python

specific modules, which I developed with others as described below, are highlighted in gray.

4.1.2 Development

The development of the Python variant of Pencil Code was done by a team composed of

myself as the team lead and five undergraduate students1. This section details how the work was

divided and completed.

1 Undergraduate students Stevie Magaco, Julien Gaupin, Scott Settle, Jackson Yelinek, and Kristofer Soto
contributed to this project.

https://github.com/cacticouncil/pencilcode

66

4.1.2.1 Language interpreter runtime

Before other my work could begin on the Python variant, a Python interpreter and

runtime needed to be integrated into the web application. I completed this work in Summer of

2016. The majority of this work involved integrating elements of the Brython interpreter [142],

which I used to package user-generated Python scripts as web requests, and integration of the full

Skulpt interpreter [143], which I used to execute the scripts after they were packaged. These

interpreters were used to parse and run python text within the web-based Pencil Code runtime.

4.1.2.2 Python routines

Using the integrated language runtime, our team (undergraduate students and I) created a

binding layer to wrap the existing Pencil Code function calls so that they could be called from

within the Python interpreter. I completed the initial subset of basic features and the binding

layer design; the undergraduate students on the team worked from this basis to add additional

functionality and correct issues that arose. The binding layer was composed of both JavaScript-

side and Python-side elements from wrapping and unwrapping routine calls.

4.1.2.3 Palette (text-to-blocks mapping)

I oversaw the palette development. The mapping was completed primarily by the

undergraduate students on the team. This is part of the “Python Blocks” module in Figure 4-1.

4.1.3 Results

The initial Python variant of Pencil Code was completed in January 2017, allowing

several months of testing before the variant was used with students. Once completed, the Python

variant (Figure 4-2) of Pencil Code was used to investigate the relationship between perceptions /

performance and blocks / text / dual mode environments. More details of this study are outlined

in Section 4.3.

67

Figure 4-1. Pencil Code architecture, with added Python-variant modules highlighted in gray.

Figure 4-2. Pencil Code Python variant: Blocks-based mode, text-based mode, output window.

68

4.2 Development: Custom Dual Modality Assessment (Python Text/Blocks)

In addition to having a suitable dual-modality programming environment to study student

perceptions, an assessment was also needed to measure any notable knowledge differences in

such a study. No assessment existed that provided both text and blocks representations, but I

intended to study programming knowledge separately from syntax, necessitating the

development of a new assessment. Some assessments, such as the FCS1 [122], are not available

to the research community due to copyright limitations, while those available, such as the SCS1

[98], were only suitable for a single measurement (limiting assessment to a single point in time),

and I intended to measure knowledge at multiple points with middle school students [98]. I

sought to address this issue by creating an assessment with three isomorphic variants of each

question so that the same concept could be tested at three separate points in time to measure

change in performance over time. This custom dual modality assessment was developed in the

spring of 2017.

4.2.1 Description of Work

Development of the initial version of the assessment proceeded in several phases:

1. Selection / construction of questions
2. Development of multiple representations
3. Creation of isomorphic variants

Question topic, style, and in some case content were influenced by existing testing

materials, including the SCS1 and AP Computer Science Principles Exam descriptions [98, 144].

4.2.2 Development

I started developing the custom assessment by working from the SCS1 (Figure 4-3a).

However, it was already known that the SCS1 and its predecessor, the FCS1, measure as too

difficult for college students [122]; that meant that many questions were unsuitable for middle

69

school students. Together, my advisors and I determined that some questions should be replaced.

I developed new questions using the AP CSP exam guide [144] to replace those SCS1 questions

considered unsuitable as part of the assessment. Some CSP question samples use a graphical

display to represent programming output (e.g., a character moving on a grid); I elected to use

Pencil Code-style turtle displays to present a familiar visualization for students after they had

worked in Pencil Code. I developed these questions in same multiple-choice format as the SCS1

and other concept inventories.

Once created, the questions were reviewed by myself and my advisors. Our goals

included a) creating questions of appropriate difficulty for middle school students, with some

questions being easy, medium and hard; b) considering the specific constructs / programming

topics that should be covered; and c) developing appropriate distractors to detect student

misconceptions. All questions involved one or more code snippets as part of the questions and/or

answers. Over multiple passes, we refined questions using these considerations until we agreed

that these objectives had been met and that the assessment was ready for use in the study.

The first version of the questions was developed in text. Once a text version of the

question was developed, the Droplet editor was used to visualize the blocks-based version of the

same code snippets. This was done for each question and variant (Figure 4-3a). For each

question developed, two additional isomorphic variants were also developed so that the same

concept could be tested at up to three points in time. This was done by changing strings, variable

names, and/or code ordering; and sometimes by modifying images representing graphs to change

positioning (Figure 4-3b).

I developed questions based on a) computational concept, b) level of reasoning, and c)

level of difficulty (Table 4-1). Computational topics included if-else, while-loops, for-loops, and

70

functions. There were four (4) unique questions for each concept. Where practical, questions

addressed level of reasoning by using simple tracing questions (for preoperational reasoning)

and code-completion questions (for operational reasoning). These question types were selected

to align with question types from the SCS1 [98]. Each concept also had questions at easy,

medium, and hard difficulty levels. I increased the difficulty of questions by adding multiple

layers of abstraction (such as nested function calls) and increasing the complexity of code blocks

to be traced or completed. The assessment is included, in its entirety, in Appendix G.

4.2.3 Impact on Course of Research

The development of this assessment played an important role in charting the course for

my research. It enabled the first study of dual-modality programming environments I conducted

(detailed in Section 4.3) and served as a comparison point, via item analysis, against the SCS1

when evaluating information from the CS1 data set (detailed in Section 5.4). This was

instrumental in deciding upon the form of the concept inventory for my final dissertation study.

Figure 4-3. Custom assessment: a) blocks / text variants (left) and b) isomorphic variants (right)

71

Table 4-1. Number of Questions by Concept, Type, Difficulty
Concept Easy Medium Hard
Tracing 2 5 3
· If-Else 1 1 0
· While-Loops 1 2 1
· For-Loops 0 1 1
· Functions 0 1 1
Completion 2 3 1
· If-Else 1 1 0
· For-Loops 1 1 0
· Functions 0 1 1

4.3 Study: Perceptions and Concept Assessment (Middle School)

Following up on my earlier work studying perceptions of programming and constructs, I

wanted to examine bridging blocks-based languages to production environments. Based on my

teaching experience and work by Tabet et al [119], I surmised that middle school students could

grasp and work in Python. Following the development of the Python branch of the Pencil Code

environment and the custom dual modality assessment, I conducted a study at a middle school in

Central Florida to collect data on and identify trends in student learning and perceptions of

programming and computer science when using bi-directional dual-modality programming

environments. The focus of the initial analysis of the results was perceptions of programming

specifically: i.e., how do bi-directional dual-modality programming environments interact

with student perceptions of programming? In designing a study to answer this question, I was

particularly interested in examining student confidence in their own ability to program, and

student perceptions of text- and blocks-based environments.

4.3.1 Study Context

I ran my study at a large public middle school in Central Florida in 2017. The study

involved participants in a single technology course (with six class periods) under the supervision

of a single instructor. Prior to participation in the study, the course instructor had planned to offer

72

programming instruction as part of the curriculum of the course. I partnered with the teacher to

use curriculum I designed and my study framework to offer this instruction. The curriculum

focused on variables, loops, selection, and functions. Of 24 school days, nine were dedicated to

state standardized assessments, leaving 15 days of instruction and three days of surveys and

assessments for this study. Depending on the testing schedule, participants received multiple

days of CS instruction per week. Each class period was 38-46 minutes, for a total of 12 contact

hours. The classroom teacher and I co-instructed the course during the instructional period.

4.3.2 Participants

I conducted my study with six classes of eighth-grade students. Before the study began,

participants took home an IRB-approved letter describing the study’s purpose and informing

guardians of their rights to opt their child out of the study. I also asked students on the first day if

they voluntarily assented to participate in the study. No compensation was provided. Of 158

students in the six classes, 129 students agreed to participate in the study. Students who did not

agree to participate received the same instruction and in-class programming assignments but did

not take study surveys.

I obtained demographic data by self-report. The participants ranged in age from 12 to 16

years old at the time the study was conducted: 86.0% (n=111) were 13 to 14 years old; 2.3%

(n=3) were 12; and 5.4% (n=7) were 15 to 16 years old. Eight participants did not provide their

age. 39.5% (n=51) of participants identified as female, and 51.9% (n=67) identified as male; one

participant (0.8%) identified as gender neutral. Ten participants did not provide a gender. The

classes were ethnically diverse. Of participants reporting one ethnic background, 25.6% (n=33)

identified as white; 30.2% (n=39) as Hispanic/Latino; 4.7% (n=6) as black or African American;

4.7% (n=6) as Asian; and 1.6% (n=2) as Native Hawaiian or Pacific Islander. 29.5% (n=38) of

participants reported multiple ethno-racial backgrounds. Five did not note a background.

73

4.3.3 Study Design

The entire study spanned the course of five weeks. Classes were taught using three

tailored versions of the Pencil Code environment’s Python language variant which limited mode

of use based on condition. I subdivided the six classes into three condition groups of two classes

each: Blocks, Dual-Modality, and Text. Figure 4-4 summarizes the amount of time each

condition spent in blocks, dual-modality, or text mode and on assessments. Participants in the

Blocks condition spent eight days using a blocks-based environment, followed by seven days

using text; those in the Dual-Modality condition spent four days in blocks, five days in the dual-

modality programming environment, and six days in text; and participants in the Text condition

used a text-only variant of Pencil Code for 15 days. Note that text syntax was available to all

students at all times due to the design of the Pencil Code blocks, which presents the full text

syntax of the constructs on the blocks. Three days were dedicated to assessments and surveys

throughout the study.

Figure 4-4. Timeline of time spent in text / dual / blocks modes by condition.

4.3.4 Data Collection

I collected data about participant demographics (Appendix C) as well as attitudes and

programming competencies via computer-based surveys (Appendix D) and assessments

74

(Appendix G) on the first day, at the midpoint, and on the last day of the programming

instruction period.

4.3.4.1 Surveys

Participants were surveyed about their general attitudes on programming using variants

of questions first proposed by Ericson and McKlin [39]. Ericson and McKlin’s questions were

general computing questions, so I modified them to specifically address programming. For

example, I asked students to rate agreement with this statement: “I can become good at

programming.” In addition, at the midpoint and end of the study, I asked participants about their

perceptions of blocks and text (see Table 4-2). Survey questions used a 7-point Likert scale to

rate agreement/disagreement (“Strongly Disagree”, “Disagree”, “Somewhat Disagree”,

“Neutral”, “Somewhat Agree”, “Agree”, “Strongly Agree”). Each question about perceptions of

blocks and text was paired with a free response prompt: “Why do you feel this way?” All

students who agreed to participate in the study (n=129) took the initial (pre-study) survey. Due to

class absences, of the 129 participants, 38.8% (n=50) participated in the mid-survey, and 57.4%

(n=74) participated in the post-survey.

Table 4-2. Questions Comparing Blocks & Text Programming
Num Prompt
Q11 I think programming in text is easier than programming in blocks.
Q10 I think programming in blocks is easier than programming in text.
Q12 I think programming in blocks is frustrating or hard.
Q13 I think programming in text is frustrating or hard.
Q15 I think learning to program in text is more useful than blocks.
Q14 I think learning to program in blocks is more useful than text.
Q16 I would prefer to program using text as opposed to blocks.
Q17 I would prefer to program using blocks as opposed to text.

4.3.4.2 Assessments

I assessed participants’ learning using the custom assessment I developed (Section 4.2)

based on questions from the SCS1 [98] instrument and sample questions in the Computer

75

Science Principles AP course and exam description [144]. Each question focused on a different

programming concept, with an equal number of questions assessing for-loops, while-loops,

selection (if-else), and functions. Blocks-based and text-based isomorphic variants of each

question were developed at multiple levels of difficulty. As most students (n=87) had prior

experience in blocks, the initial assessment used only blocks, while the final assessment used

only text. The mid-assessment was dependent upon condition, with blocks condition participants

receiving a blocks-only assessment, text condition participants receiving a text-only assessment,

and dual-modality condition participants receiving a mixed assessment.

4.3.5 Data Analysis

To investigate the programming environment and students’ perceptions of blocks and

text, I analyzed the Likert responses and free response question answers. I converted all Likert

responses to numeric values (1 to 7), inverted the value for blocks-preference responses, and

calculated the midpoint of the two variants for question pairs. I grouped responses with

midpoints of 1-3.9 as “disagree”, 4.0 as “neutral”, and 4.1-7 as “agree”. I present the proportion

of students who agreed, disagreed, or were neutral for each question in Figure 4-5. The n varies

per question since not all students opted to answer all questions. I qualitatively coded the free

responses to identify themes related to participants’ perceptions of blocks and text programming.

Using an inductive qualitative coding approach [4], I created and assigned codes to each

response. If there were two or more distinct ideas addressed by a response, I assigned multiple

codes to that response. Each code included an over-arching theme as well as a sub-code to

identify the specific reasoning. Each response fell into one of these themes: Pro-Text, Pro-

Blocks, Anti-Text, Anti-Blocks, Neutral. The sub-codes included descriptions of the mode they

liked / disliked, such as Easy, Hard, Efficient, and Fun. To compute interrater reliability for each

76

question and response code [47], a second researcher coded 16% of the responses2. The average

agreement between coders was Cohen’s kappa = 0.7845, which is characterized as substantial

agreement [128].

Figure 4-5. Distribution of survey Likert responses.

4.3.6 Findings

My findings focused on key patterns from my survey on participants’ perceptions of

programming in blocks or text by condition after switching to text-only representations. I

examined the distribution of participant responses to Likert scale questions regarding

participants’ perceptions of text as easy (Q10/Q11) and frustrating (Q13) and also the coded

responses to the accompanying free response questions.

Dual-modality condition participants most often rated text as easier than blocks

compared to blocks condition participants (Q10/Q11, Likert). On the final survey, 18.5%

(n=5) of those in the dual-modality condition identified text as easier than blocks, while 14.8%

2 Pedro G. Feijóo-García coded 16% of the student responses as part of this study.

77

(n=4) were neutral and 66.7% (n=18) disagreed. In contrast, fewer participants in the blocks

condition agreed that text was easier than blocks (agree: 8.3% (n=1); neutral: 25.0% (n=3);

disagree: 66.7% (n=8)). Text condition students rated text representations as easier about as

frequently as dual-modality students but disagreed less often (agree: 16.0% (n=4); neutral: 48.0%

(n=12); disagree: 36.0% (n=9)).

Dual-modality condition participants perceived text more favorably than blocks

condition participants (all free response). For every one of the text-blocks comparison

questions I asked, dual-modality condition participants were 1) more often pro-text and 2) less

often anti-text than their blocks condition counterparts. Dual-modality condition participants also

frequently responded using comparisons between the environments when giving a neutral

response.

One common reason given by dual-modality condition participants for why they liked

text was that they felt it helped them make rapid progress, with students noting: “…it is a lot

faster and easier to understand” [H002] and “…I think text is faster and makes it easier to change

the code” [H024]. These responses suggest that dual-modality condition participants developed

an appreciation for the benefits of text in terms of efficiency in programming. Another common

reason cited by dual-modality condition participants for preferring text over blocks was that they

found text to be more organized and easier to debug: “It's faster for me to recognize the error in

my code when looking at text and it is easier to organize” [H002]. They also felt text offered

more flexibility than blocks: “text is more free in what you can do while blocks have very

restrictive ways of coding” [H099]. Dual-modality condition participants who perceived text less

favorably than blocks cited syntax issues as their biggest challenges: “because when you [are]

78

programming in text there is a million ways you can mess up the coding. and it[‘]s not always

easy remembering the codes” [H042].

Many responses given by dual-modality condition participants were comparative, noting

pros and cons of a particular mode. One dual-modality student said, “because… [blocks are]

easier but at the same time you need to get used to it [text]” [H126], while another noted that “I

think that they both have their advantages” [H065]. The comparisons expressed in these

responses are evidence of a more nuanced view of programming representations, weighing the

benefits and drawbacks of blocks and text.

On the other hand, participants in the blocks condition were more negative about text

programming, frequently mentioning syntax and detail issues that they felt got in their way: “it

takes to[o] long to write and any little mistake can mess up the whole thing” [B047]. Another

blocks condition participant said, “Any small mistake will make it say ‘script error’” [B043].

From these responses, we see that blocks participants primarily focused on the difficulties that

text presented and were not able to recognize the strengths of text in terms of organization and

flexibility that dual-modality participants noted.

Dual-modality and blocks conditions participants both found text frustrating, unlike

text condition participants (Q13, Likert and free response). 56.0% (n=14) of dual-modality

condition participants agreed that programming in text was frustrating or hard, while 16.0%

(n=4) were neutral and 28.0% (n=7) disagreed. Similarly, the majority of blocks condition

participants agreed that text was frustrating or hard (agree: 52.9% (n=9); neutral: 23.5% (n=4);

disagree: 23.5% (n=3)). Meanwhile, only 33.3% (n=8) of text condition participants agreed that

text was frustrating or hard (neutral: 37.5% (n=9); disagree: 29.2% (n=7)).

79

Many text condition participants described feeling comfortable using text despite the

challenges they noted: “I feel it's really easy, I just need a little more practice” [T082]. In

contrast, dual-modality and blocks condition participants mentioned similar obstacles and were

more discouraged, rating text as more frustrating. One blocks condition participant noted that

“[text is more frustrating than blocks because] the text has to be perfect” [B040] and one dual-

modality condition participant said, “You have to beware of many errors because when you do it

wrong you have to figure out where you messed up and it takes a while” [H122]. These

responses show that participants in all conditions referred to experiencing obstacles in using text

related to syntax. Text condition participants framed them as challenges to master, while dual-

modality and blocks condition participants interpreted them as impediments that limited their

progress. It is notable that text students spent the entire study within the text environment, and

thus had more time to achieve a high level of comfort in text.

4.3.7 Discussion

In this study, I surveyed participants who transitioned from blocks to text directly and via

a dual-modality programming environment, as well as participants learning only in text about

their perceptions of blocks, text, and programming in general. Participants who used dual-

modality programming environments rated text easier to use when compared with those who

moved directly from blocks to text. Both dual-modality and blocks condition participants

experienced more frustration in text. However, I also found that, in general, dual-modality

condition participants held positive perceptions of text more frequently across questions

regarding difficulty, frustration, usefulness, and preferred mode of programming, compared to

blocks condition participants.

Perhaps not surprisingly, the blocks condition participants had a less favorable view of

text than either dual-modality or text condition participants. Responses may reflect the

80

frustration of moving directly from blocks to text, suddenly losing the scaffolding on which they

had come to depend, which was also supported by my classroom observations during the study.

After moving to text, blocks students especially expressed frustration related to usability and

increased errors.

Dual-modality participants, notably, expressed more positive views of text representation,

overall, than their counterparts in the blocks condition. Many dual-modality participants

expressed positive views of working in text, stating that text was easier to understand and helped

support their learning, while others described it as fun – suggesting that they had developed a

level of comfort in text programming. Classroom observations during the study sessions

confirmed that students frequently flipped back and forth between blocks and text – taking

advantage of the scaffolding that bidirectional dual-modality programming environments

provide. This allowed each participant to transition at their own pace, making the transition from

blocks to text less jarring and more inviting. This complements prior work showing that students

in dual-modality programming environments often switch between blocks and text when new

constructs are introduced [9]. The self-paced transition is particularly important as increase in

confidence is one of the major motivations for creating visual (and especially blocks-based)

languages [54] and suggests that dual-modality programming environments may help achieve the

educational goals of blocks-based environments.

These differences between conditions provide insight that will help contextualize and

facilitate further development of environments for learning programming. Perceptions of

programming can impact perseverance in the field by newcomers [37]; my study demonstrates

how those perceptions differ based on the tools used to transition between blocks and text. These

findings suggest that educators can reduce the hurdles and frustrations students face when

81

moving from blocks to text by using an environment that bridges representations. By developing

approaches to computer science instruction that reduce perception of difficulty and frustration,

and improve perceptions of usefulness, we remove obstacles that participants face when first

engaging with programming and transitioning to text-based programming.

82

CHAPTER 5
FINAL STUDY: LEARNING & DUAL-MODALITY INSTRUCTION

My early work focused on identifying how programming environments impact novice

programmers in terms of learning and perception. This included understanding student

perceptions of the discipline overall and of specific programming constructs. While my work

began in blocks-based environments common in K-12 computing education, dual-modality

programming environments presented an interesting and unexplored area of research. As

discussed in Chapter 4, I began to investigate dual-modality programming environments with my

study at a middle school with the Pencil Code Python variant. Building on that work, final study

focuses on exploring in detail the relationship between dual-modality programming

environments in production languages and learning of programming, particularly in college.

Many students receive some programming instruction as part of their K-12 education in

blocks-based environments [10, 14, 16]. At the college level, however, computer science

instruction is primarily in text-based languages [84, 127]. Though dual-modality representations

offer students the opportunity to seamlessly transition between code representations—allowing

them to build a conceptual bridge between blocks and text—they are also largely tied to sandbox

environments, and few (if any) tools exist that facilitate use of dual-modality representations for

general purpose programming in compiled languages (e.g., Java, C, and C++), making them

more difficult to use in undergraduate instructional settings. I sought to build tools for and

investigate the use of dual-modality programming environments at the college level for this

reason.

To investigate the relationship between dual-modality programming environments and

learning, I first conducted a study to evaluate the SCS1 in the context of the target population in

UF’s introductory computer science (CS1) course in the Fall of 2017. I then conducted a

83

comparative study of dual-modality vs text-based instruction with a baseline and intervention

group that spanned two semesters. I ran this study while teaching UF’s CS1 course in Spring of

2018 with a traditional text instructional approach and in Fall of 2018 using dual-modality tools

and curricula developed as part of my doctoral work. My final study was composed of four

distinct parts:

a) developing a plugin for an Integrated Development Environment (IDE) providing dual-
modality representation of the Java language,

b) developing a dual-modality curriculum for a CS1 course,

c) validating the SCS1 for use with the CS1 population at the University of Florida, and

d) designing, conducting, and analyzing data from a study of the relationship between dual-
modality representations, learning, and student perceptions in the classroom.

In this chapter, I will describe development work and studies that together constitute the

capstone of my dissertation work.

• Section 5.1 describes my research questions, which explore dual-modality programming
environments and their support for learning and perceptions of programming and
computer science.

• Sections 5.2 – 5.4 describe the key components of my dissertation work needed to
conduct the final evaluation of the connection between dual-modality programming
environments and learning, with studies and analyses described in sections 5.5 – 5.6.

o Section 5.2 discusses the software development work I completed to create a dual-
modality programming environment that allows students to switch between blocks
and text programming.

o Section 5.3 discusses the curricular changes I made to the existing text-based CS1
course at UF (COP 3502) to incorporate dual-modality instruction, as well as the
ethical issues considered.

o Section 5.4 discusses the validation and evaluation of a CS concept inventory I used
to evaluate student knowledge and performance.

• Sections 5.5 & 5.6 describe the final study that I conducted to evaluate how dual-
modality instruction connects to student learning (5.5) and approach to analysis of data
collected (5.6).

84

5.1 Research Questions & Hypotheses

My dissertation work seeks to evaluate the connection between dual-modality instruction

and learning among students with and without prior programming experience in blocks and/or

text environments, especially as it relates to cognitive development. My early work (Section 4.3)

with middle school students has shown that students perceive text as easier when a dual-modality

programming environment is used to transition between blocks and text. Additionally, prior

research has suggested that students in dual-modality programming environments may use

blocks when learning new constructs, but transition to text over time [9]. This is a benefit in CS1

courses that have students who come with a variety of prior experiences – including those with

no prior coding experiences, block-based experience, and text-based experiences – because dual-

modality programming environments allow students to self-scaffold themselves, transitioning

when they are ready.

In my work, I sought to uncover how dual-modality programming environments might

help novices develop computer science knowledge and skills, including chunking and

abstraction. Research suggests that chunking and abstraction are important mechanisms

employed by experts that may be challenging for novices to learn [71]. By learning to employ

chunking and abstraction, practitioners reduce their cognitive load, allowing them to more

efficiently think about information by abstracting it to tackle complex problems [71, 72]. In

programming, abstraction and chunking are employed by practitioners when writing code [32],

and there is evidence that chunking and abstraction aid in reading and tracing of programs [121].

I anticipated that the affordances of blocks (such as the puzzle-piece mechanism) would

promote understanding of how constructs fit together (“what goes where”). By explicitly

“blocking” text (associating text constructs with puzzle-piece-like blocks), dual-modality

programming environments would promote chunking and abstraction via their block-

85

representation affordances. I further anticipated that the explicit display of text on blocks would

help students learn syntax, and that dual-modality programming environments would link text

constructs via their blocks with connective cues in the blocks environment (e.g., puzzle-piece

connectors), which would provide scaffolding for new construct uses while students are learning

them. As such, I hypothesized that dual-modality programming environments would support

learning of conceptual programming knowledge by helping students overcome several

challenges related to syntax, abstraction, and chunking, and in so doing, aid students’ cognitive

development.

In addition to the connection to conceptual programming knowledge, I hypothesized that

dual-modality programming environments would promote student confidence and self-efficacy

in programming. It has been shown that textual languages pose challenges to novices due to

difficulties with syntax and perceptions of text languages as hard and/or intimidating [72, 54].

On the other hand, text languages have the benefit of being perceived as more authentic than

blocks-based languages [134]. I expected that the association of blocks and text would reinforce

authenticity of the experience, while the blocks scaffolding of the dual-modality programming

environment would provide an inviting, rather than intimidating, interface.

5.1.1 Performance Comparison in Dual-Modality vs Text Instruction

RQ1. How do students perform in code reading and writing after learning with dual-modality

instruction, as compared to students learning with traditional (text-based) approaches to

instruction in CS1 courses?

H1. Students learning using dual-modality programming environments and via dual-modality

instruction will gain more knowledge and reach higher levels of cognitive development and

expertise in programming as compared students learning via traditional (text-based) approaches.

86

Reasoning. Corney et al.’s work drew on the Neo-Piagetian framework for novice programmers

to examine student learning in a traditional CS1 course, which used text-based instruction [32].

This work suggests that, while most students progress beyond the sensorimotor stage, in that they

know a program functions but not how or why [73], the majority of students are at the

preoperational stage or early concrete operational stage. In other words, they are capable of

simple syntax evaluation and tracing (pre-operational) or have the ability to engage in limited

abstraction and chunking when reading code (concrete operational stage). Comparatively, a

minority of students show mastery of concrete operational thinking (in which they can reason

routinely with abstractions about concrete situations) [32].

Dual-modality programming environments delineate programming language constructs

visually, providing connective cues in addition to the text itself. These affordances scaffold code

chunking and abstraction. In this way, dual-modality programming environments have the

potential to reduce cognitive load which would allow students to engage in concrete- and formal-

operational reasoning modes – in which they can reason with abstractions about hypothetical

situations – more readily by facilitating chunking and abstraction. This in turn will help students

to generalize code problems based on prior experience and develop solutions for them. As such, I

expected most students learning via dual-modality instruction would show mastery of concrete

operational thinking by the end of the course.

5.1.2 Performance Comparison by Prior Experience

RQ2. How does prior programming experience affect students learning in dual-modality

instruction as compared to students learning in traditional (text-based) approaches to instruction

in CS1 courses?

H2. When comparing those learning via dual-modality vs text-based environments at the end of

the course, there will be more of a difference in programming knowledge between students with

87

no prior experience than those with prior experience. Programming knowledge will differ the

least for students with prior experience only in text when comparing those learning via dual-

modality vs purely text-based environments.

Reasoning. As students progress from sensorimotor to concrete- and formal-operational levels of

development, they must develop mental models of programming, including the ability to abstract

and chunk code [71, 32]. Students with no prior experience (in the sensorimotor stage) have no

mental support structures or mental models of programming; as a result, they stand to gain the

most from approaches that scaffold chunking and abstraction, as I hypothesized dual-modality

programming environments do.

Students with prior experience – in blocks or in text – are likely to have reached

preoperational or concrete-operational stages and would have already developed some mental

models of programming that aid them in abstraction and chunking. However, the literature shows

that students may continue to face difficulties with syntax even after working in blocks-based

environments when transitioning to text [74]. This suggests that, for students who have prior

experience is in blocks, some of those mental models may be tied to blocks-based

representations and may not transfer to text-based environments. Dual-modality programming

environments provide scaffolding in the form of a bridge between blocks and text

representations. This is reinforced by the presence of text on the blocks themselves. Direct

transition between blocks and text, scaffolded by dual-modality instruction and dual-modality

programming environments, would reinforce the students’ connections between blocks and text

representations, helping students associate new text representations with block representations

already familiar to them.

88

Students with prior experience only in text already have developed mental models of

programming. As these students do not need to learn to program, they are unlikely to benefit

from the blocks-based programming construct scaffolds that blocks representations provide. I felt

that they might still benefit from the chunking mechanism provided by dual-modality

programming environments, but if so, I anticipated that it would likely reinforce existing mental

models rather than help develop new ones, so I hypothesized that the result would a be modest (if

measurable) difference in ability to trace (read) and complete (write) sections of code.

5.1.3 Classroom Experience of Dual-Modality Instruction

RQ3. What are student perceptions of dual-modality programming environments and

instructional approaches, and how do they change over time, in the context of a CS1 course?

H3. Dual-modality programming environments will promote, strengthen, and support student

confidence, motivation, and self-efficacy in programming coursework.

Reasoning. There are accounts in interviews in the computer science education literature that

suggest some students perceive text languages as hard and intimidating [54]. In contrast, block-

based environments were developed specifically to support student engagement and motivation

while minimizing anxiety [54, 88]. However, some students continue to struggle with negative

perceptions of text-based programming when they move from blocks to text [74]. Dual-modality

programming environments provide a bridge between blocks and text representations, in effect

providing the affordances and inviting context of blocks-based environments, while also

providing scaffolding for learning text-based programming syntax. My findings in working with

middle school students (Section 4.3) suggested that dual-modality programming environments

help alleviate some negative perceptions of text. In addition, dual-modality programming

environments allow switching between blocks and text in real-time, so students can switch into

text easily as they come to understand constructs and integrate them into their mental models.

89

This self-paced nature of the dual-modality programming environment would provide students a

level of control that is empowering. As such, dual-modality programming environments would

alleviate the negative perceptions of text, thereby contributing to improved motivation and

confidence, which have been shown to improve retention within the discipline [80].

5.2 Amphibian: A Dual-Modality-Representation IDE Plugin for Java

A significant challenge to using dual-modality programming environments in instruction

is that the dual-modality tools have been built into sandbox environments with functionality

tailored to a specific purpose. For example, Tiled Grace [53] and Pencil Code [9] are two

website-based environments that allow students to program in the browser without any additional

tools, but programs are limited to turtle-graphics sandbox features; users cannot use other

standard or third-party libraries and features. However, students in introductory programming

classes at the college level usually use an Integrated Development Environment (IDE) which

provides a suite of tools for programming support, including integration of standard language

libraries. The use of IDEs is common in industry, and thus bring additional authenticity to the

learning experience. As such, I could facilitate instruction and research via dual-modality

representations in existing college-level curricula by integrating dual-modality tools within these

general-purpose development environments.

At the time I began my work, there were no dual-modality tools for standalone IDE-

based development outside of tailored sandbox environments, so I developed a plugin for IntelliJ

IDEA based on Pencil Code’s online open-source Droplet Editor [7, 145]. Matsuzawa et al.

previously developed a blocks-text tool for a subset of the Java language, but this was also

limited to a turtle-graphics environment [82]. Two undergraduate students helped develop the

IDE plugin – a software component that adds functionality by “plugging into” the existing

90

software – to enable switching between blocks and text within a production environment1. The

plugin I developed, which I dubbed Amphibian [146], enables instructors to more easily

incorporate dual-modality instruction into courses and enables more rigorous investigation of

dual-modality representations in classrooms by allowing researchers to reduce other potentially

confounding variables, such as different languages, software systems, and development

environments.

The Droplet Editor’s extensibility allowed me to integrate the language of choice into

Amphibian. I noted that many introductory computer science programs at the high school and

college levels, including those at my institution, use Java as the target language. To facilitate

practical study of CS1 student performance in a “real-world” environment, I focused

development on a Java variant. Amphibian allows users to switch back and forth between text

and blocks modes, thereby enabling teachers of Java courses, including those of AP CS and

many introductory college courses, to build blocks/text transitions into curricula.

5.2.1 Using the Amphibian Plugin

Amphibian uses IntelliJ’s plugin API and can be installed in the same manner as other

plugins. Once installed, Amphibian adds two tabs to the bottom of the editor pane of any Java

file (Figure 5-1a). The tabs allow users to switch between the text of a program (Text Mode),

which is the default mode upon startup, and its blocks representation (Blocks Mode), and back

again.

In Text Mode, the editor retains all features of the IDE’s text editor, including syntax

highlighting, prediction, error identification, recommendations, and code region identification.

When the “Blocks” tab is selected, the editor switches to Blocks Mode, which uses the Droplet

1 Undergraduate students Benjamin King and Trevor Lory contributed to this project.

91

Editor to present a toolbox from which blocks can be dragged to add them to the program

(Figure 5-1c) as well as to display and enable editing of blocks-based constructs (Figure 5-1d).

When in Blocks Mode, the program can be modified by adding new blocks to the program, with

correct constructions signified by the puzzle piece style snap-together construction (Figure 5-1b)

often used in blocks-based environments. Text in light-colored areas may be edited directly; in

the case of variable value assignment, users may also drag-and-drop blocks representing

variables / objects. At any time, a user can change modes using the same tabs.

To facilitate Java programming specifically, I added object-oriented blocks, including

classes and methods (Figure 5-2a), while access modifiers such as “public” and “private” can be

selected from dropdown components on the blocks themselves. Similarly, built-in variable types

for parameters of variables can be selected from a dropdown menu on the blocks (Figure 5-2b),

and users can enter text for custom and imported types. Whenever a block is added to the

program via the drag-and-drop interface, the embedded Droplet Editor variant adds the construct

to the program’s text and its blocks-based representation in real-time.

It is important to note that, as the plugin only changes the interface for editing the

program, all IDE features remain available. Users can follow the typical workflow to build and

run programs, including developing and running unit tests. Any Java project can be used with the

plugin, including typical text-based and graphical applications, Android apps, and libraries.

92

Figure 5-1. Amphibian Blocks Mode editor showing a) tabs for switching between modes,
puzzle-piece connection, b) blocks representation of the current program, and c)
block toolbox from which users can drag and drop constructs.

93

Figure 5-2. Amphibian Blocks Mode editor showing a) Java object-oriented constructs and b)
drop-down menus used for types and modifiers.

5.2.2 Architecture

Amphibian was developed in two distinct phases. In one, I incorporated the Java

language into Droplet, and in another, I developed the plugin into which I embedded Droplet.

5.2.2.1 The Droplet Editor

To enable Droplet to process Java language constructs, I integrated a customized Java

language parser. To do so I constructed a custom variant of the Java 9 grammar specification and

used ANTLR [100] to generate a parser program. Once the parser was in place, I developed a

Droplet “palette” – a set of blocks-text mappings – for Java language constructs, including

control structures, common statements, and object-oriented constructs such as classes and

methods.

94

5.2.2.2 IntelliJ IDE Plugin Framework

The plugin connects to two major IntelliJ systems: the User Interface (UI) and the

Document Manager (Figure 5-3). Whenever a Java file is opened, Amphibian adds the “Blocks”

and “Text” tabs to the standard text editor. At the same time, in the background the blocks editor

is loaded. This is accomplished by embedding a browser component via JxBrowser [147], which

is preloaded with the Droplet Editor variant and custom JavaScript files, that can receive

notifications from the plugin. When the user is in Text Mode and the “Blocks” tab is selected, an

event is sent to the Droplet Editor which includes the current document text state. The text is

loaded and processed, after which the embedded browser is displayed in the UI. The Java parser

can interpret incomplete programs as blocks even when some constructs are missing. However,

if the text syntax cannot be parsed due to irrecoverable errors, such as missing brackets, a modal

dialog is shown to the user indicating the syntax error and directing the user to fix it in text

mode. Otherwise, the browser editor window is shown, and user can edit the program using the

blocks interface (Figure 5-4).

Figure 5-3. Amphibian architecture with new elements highlighted in gray: a) Modifications to
the Droplet Editor and b) Architecture of the IntelliJ Plugin.

95

Figure 5-4. Example of switching from text to blocks mode: a) successful change to blocks mode
and b) syntax error message.

5.2.2.3 Logging mechanism

Any time the toolbox palette changes or a block is dragged or dropped, the event is sent

to the log. This log entry by default is displayed in the console, but the plugin can be configured

to forward the message to a remote server so that study data can be collected from multiple users,

as was done in my study. In addition, whenever the program is changed, the updated text is sent

to the IntelliJ Document Manager. This ensures that the program text is synchronized between

Blocks Mode and Text Mode (the standard IDE text editor). In addition, this means that there is

always a text representation of the blocks; incomplete programs will not prevent conversion from

blocks to text. When the text tab is selected from within Blocks Mode, the current text state is

sent again to the IntelliJ Document Manager and the display is changed back to the default text

editor for the IDE.

5.3 Dual-Modality Curriculum

To facilitate student use of and learning via the dual-modality programming environment,

I updated the UF CS1 (COP3502: Programming Fundamentals I) course materials to address

blocks and text representations. Previously, materials were based entirely on text representations;

I added blocks-based representations to connect the classroom lectures with the dual-modality

96

representation IDE plugin. Based on these dual-modality-representation materials and collected

data, I evaluated student perceptions and the classroom experience when using these tools during

the full-semester course offering which I taught in Fall 2018.

5.3.1 Instruction

I adjusted lecture materials – particularly slides and other visuals – to take advantage of

the blocks-to-text dual-modality representation made available in the plugin. In lecture slides,

rather than individual lines of text, code was presented in individual blocks, transitioning via

animation to text to connect the representations for students (Figure 5-5). While most of the

course was taught using dual-modality instruction, students will ultimately need to work in pure

text environments in future coursework and their careers, so the latter part (about one-third) of

the class was taught in text (Table 5-1). Aside from the addition of dual-modality representations

to materials, the presentation of materials was not changed – all lecture slides and materials were

otherwise the same between the two conditions. In other words, the lesson plans, lecture

sequence, and assignments were the same, and the blocking mechanism was not explicitly

highlighted separately in the intervention semester.

In lab sessions, teaching assistants and tutors explained and demonstrated use and

function of the dual-modality IDE plugin within the IntelliJ environment. In-lab demonstrations

of code and concepts were conducted directly in the plugin’s dual-modality programming

environment as appropriate. In the first lab session, students were instructed on use of the plugin:

1. Installation of IntelliJ and Plugin
2. User interface for swapping between blocks and text
3. Short live-coding demonstration of “Hello World” in blocks, converted to text
4. Demonstration of changes made in text translating to blocks when mode is switched

97

Figure 5-5. Instructional material – presentation in blocks, followed by conversion to text.

Table 5-1. Course Topics & Mode for Instructional Intervention
Unit Topic (Approx. 1 Week per Topic) Instruction
Fundamentals of Computing Dual-Modality
Variables & Arithmetic Dual-Modality
Control Structures Dual-Modality
Data Types & Objects Dual-Modality
Methods & Collections Dual-Modality
Engineering Process Discussion
Mathematics of Computation Discussion
Classes Dual-Modality
Inheritance Text
Input, Output, & Files Text
Truth & Logic Discussion
Programming paradigms Text
Memory management Text

5.3.2 Assignments

Assignments were updated to include text and blocks representations in Droplet style

wherever sample or demonstration code was provided (Figure 5-6).

The assignments in the course served two primary functions in this study:

• They provided students with a setting in which to apply concepts learned and make use of
the dual-modality IDE plugin, which facilitated the collection of log data, and

• Assignment scores were used as one of several measurements to evaluate student
knowledge throughout the class.

98

Figure 5-6. Curriculum assignment documentation – sample code in blocks and text.

5.3.3 Ethical Considerations

As a matter of caution and to ensure the integrity of the curriculum, it is important to

address ethical considerations in performing studies within classrooms where they may impact

student learning. The study hypotheses in Section 5.1 lay out benefits I believed students would

receive from the curriculum. As this intervention took place in a core required course, a faculty

review by course committees was undertaken. In this section I also address potential concerns

and criticisms of using dual-modality instruction or tools in a university course and its potential

impact on students, such as concerns about preparation of students for future courses.

5.3.3.1 Faculty review

To ensure the curriculum adjustments were in line with expectations of the department,

the proposed changes were reviewed by my advisors and other faculty members. Specifically,

changes were presented to and accepted by the Undergraduate Curriculum Review and

Undergraduate Curriculum committees in the CISE Department. This presentation and approval

were noted in meeting logs and written correspondence (Appendix M).

5.3.3.2 Delay of pure-text instruction

The use of blocks constructs as part of the dual-modality programming environment

could be argued to take time away from, and therefore delay, introduction of text-based

programming instruction. However, in the case of dual-modality programming environments,

text is introduced along-side blocks. In other words, dual-modality programming environments

99

did not delay introduction of text instruction in my study. Preconceived perceptions of

inauthenticity of blocks could have led students, and even some faculty, to construe dual-

modality programming environments as a mental “crutch”; however, as quizzes and exams were

text-based, students were incentivized to learn text representations.

5.3.3.3 Cognitive overload

Dual-modality programming environments introduce two different representations of the

same program. It could be argued that these dual representations require more mental effort to

consider when programming, inhibiting performance. However, in Droplet’s model, text is

always present, and blocks are presented as colorful highlighting of text. Thus, the text syntax

and blocks constructs are presented together in blocks mode, not as separate, disconnected

representations. In addition, instructions presented blocks and text representations together as a

single concept in order to minimize duplication of mental effort.

5.4 Instrument Evaluation Study

In order to assess knowledge in the CS1 course I studied – COP3502 at the University of

Florida – I first investigated existing computer science concept instruments to find one suitable

to the course’s student population. Using a computer science concept inventory instrument

allowed me to evaluate student ability in the programming topics I am studying using an

instrument developed by the research community for this purpose [122, 127]. I looked to the

SCS1, which was available to the research community. However, the SCS1’s authors have noted

that their initial results suggested its potential to discriminate by ability is limited by its high

difficulty level [99]. Item Response Theory (IRT) measurements [5], taken for each question,

suggest that the assessment skews toward hard difficulty, with most questions being considered

fair, rather than good, discriminators [116]. As such, I also considered the custom dual-modality

assessment I had developed during my middle school study. To evaluate the applicability of the

100

SCS1 and the custom assessment for use in future studies, I administered the SCS1 and custom

assessment at the end of the Fall term of 2017 in the CS1 course, which was taught using

traditional text-based instruction.

5.4.1 Context & Data Collection

I collected responses on both the custom assessment and the SCS1 from students at the

end of UF’s COP3502 course in Fall 2017. Student responses to each question were recorded,

individually, via Qualtrics. In addition, demographic data were collected from participants at the

end of the same computer-based survey. Participants completed the assessment, demographic,

and attitude questions in a dedicated room with a proctor over a period of one-hour fifty-five

minutes. The assessment assigned to each student was determined randomly, with half of

participants being assigned to the SCS1, and the other half being assigned to the custom

assessment. In all, 203 students completed the custom assessment, and 199 students completed

the SCS1. This study’s data collection was classified as exempt by UF’s Institutional Review

Board (IRB). No compensation was provided to participants, but students who participated

received extra credit in the course. These data were also used to decide the direction of my final

dissertation study.

5.4.2 Question Analysis

I performed an initial item analysis of student responses to the SCS1 and custom

assessment using the method outlined by Sudol & Studer [115] to determine if either or both

were appropriate for the CS1 student population and to make a decision on an instrument for

future work. After initial item analysis of data collection in the Fall 2017 term, I determined in

consultation with my advisors that the SCS1 was of appropriately difficulty and covered the

correct concepts for it to be an effective assessment instrument for future work at the college

101

level. The methods used in this analysis and the results are described and summarized in this

section.

I analyzed the responses to the Fall 2017 Custom Assessment and SCS1 results using the

approaches described by Sudol and Studer [115]. As I wanted to evaluate both the difficulty of

the items as well as their abilities to discriminate between students of different abilities, I used

the two-parameter logistical model (2PL) approach they described. The 2PL model provides a

difficulty level, which measures how difficult each item in the set is, as well as a discrimination

factor, which measures how effective the item is at differentiating test takers of different ability

levels. The results of these analyses are included in Appendix H and Appendix I.

The item analysis revealed that the custom assessment’s questions were both too low in

terms of difficulty and insufficiently discriminating according to ability with the tested

population (Appendix H). Sudol noted that items typically fall in a difficulty range of -3 (easy) to

+3 (hard) and discrimination values between 0 and 2 [115]. Six questions (37.5%) on the custom

assessment fell outside of these ranges for difficulty or discrimination. In addition, most of the

questions (9 of 16) were “easy” – i.e., having a difficulty rating of -1 or lower, and none had a

difficulty of 1 or higher (i.e., none were “hard” questions). Thus, the custom assessment

exhibited a ceiling effect with the students in the CS1 course, which would make it difficult to

identify knowledge and cognitive differences that might manifest due to an intervention. This is

likely due to the custom assessment’s design for middle school students (described in Section

4.2).

By comparison, the SCS1’s questions closely matched ideal ranges for ability

discrimination and level of difficulty, suggesting that the SCS1 could be an effective tool with

this population. All of the questions on the SCS1 in the analysis fell within the expected

102

difficulty range (-3 to +3) and the ideal discrimination factor range (0 to 2). In addition, for this

population, the SCS1’s difficulty range appeared to be an excellent match; 21 of 27 questions

(77.8%) fell within a difficulty range of -1 to +1 (“medium” difficulty), with only two questions

(7.4%) under -1 (“easy”) and four (14.8%) over +1 (“hard”) (Appendix I). As a result, I decided

to use the data collected via the SCS1 to assess knowledge in the study outlined later in this

chapter.

5.5 Study: Dual-Modality Instruction, CS Learning, and Classroom Experience (CS1)

I investigated the use of dual-modality instruction and student learning in a study at the

college level in a multi-section CS1 course (UF’s COP3502), which is taught in the Java

language, across two 16-week semesters (n=673). The course consisted of two large weekly

lecture meetings and a weekly small lab meeting. I taught the class in both semesters. The first

semester (n=248), acting as a baseline group, was taught using traditional, text-based instruction.

The second semester (n=425), acting as an intervention group, was taught using dual-modality

instruction and a dual-modality IDE plugin I developed. I measured participant learning via the

SCS1 [98], which students took at the end of the course just before the final examination, as well

as course examination questions, which I classified as either definitional / code reading or code

writing [121]. The course covered all concepts tested by the SCS1 and course examinations. I

also collected student responses to several surveys (Appendix F) throughout the intervention

semester to help me understand the mechanisms behind any effects I might see. This included

regular surveys during each module – weekly excepting exam and break weeks (Table 5-2) – as

well as surveys and at the beginning, midpoint, and end of instruction, about student perceptions

of blocks, text, and dual-modality instruction. Based on my hypothesis that dual-modality

instruction and tools would help students better chunk and abstract sections of code, my

103

expectation was that students in the intervention group would score higher on exam questions

and the SCS1 than those in the baseline group.

As noted previously, many K-12 curricula focus on blocks-based environments; as such,

many students in CS1 courses like UF’s have some prior experience in blocks-based

programming environments. Students without experience could benefit from scaffolding, and

students with only blocks-based experience needed to transition to programming in text, with all

of the challenges and difficulties that entails. These students in particular stood to benefit from

the representations provided by dual-modality programming environments, though I expected

these environments to help students with prior experience as well. I hypothesized in Section 5.1

that students in the intervention group would learn more about programming compared to those

in the baseline group, and that differences between the groups would be most pronounced among

those with no prior programming experience.

Table 5-2. Module Survey Questions (Weekly)
Q Prompt
1 Did you program in “Blocks” mode since the end of your previous lab (including this lab)?
2 Did you program in “Text” mode since the end of your previous lab (including this lab)?
3 What was your primary mode since the end of your previous lab (including this lab)?
4 Does instruction in dual blocks-text modes help you learn better?
5 Why do you feel this way?

5.5.1 Study Design

This study used a quasi-experimental design with repeated measures and two groups.

Both semesters used the same lecture and lab format. The first semester, Spring 2018, acting as a

baseline group, was taught using traditional, text-based instruction; the second semester, Fall

2018, acting as an intervention group, was taught using dual-modality instruction and the dual-

modality IDE plugin I developed for the study:

104

a) Students in the baseline group (n=248) were provided with standard development tools,
including the IntelliJ IDEA, an Integrated Development Environment (IDE). All lecture
slides and assignment descriptions used only text programming representations.

b) Students in the intervention group were provided with IntelliJ IDEA and the Amphibian
Dual-Modality IDE Plugin for Java I built, which presented text and blocks
representations of the code they wrote and allowed them to move freely between
representation modes. They were also instructed in the plugin’s use in lab sessions.
66.7% of the course (8 of 12 topics) used blocks and text representations on assignment
descriptions and lecture slides (Section 5.3). The remaining topics were not represented
in the blocks construct models of the plugin (e.g., inheritance) or were non-programming
topics (e.g., ethics and version baseline).

In general, the topic ordering between the semesters was the same, but some topics were

replaced as part of typical course content adjustment in preparation for later courses. In the

baseline semester, introductory Data Structure and Generics were covered, while in the

intervention semester, Algorithm Complexity and Propositional Logic were covered – none of

which are facilitated by dual-modality instruction.

During the first lab session, students in the intervention group completed a personal

perception survey; as in middle school study, the questions were based on the work of Ericson

and McKlin [39]. As in the middle school study, since Ericson and McKlin’s questions were

general computing questions, I modified them to specifically address programming (Appendix

G). Each week, students in the intervention group completed a short survey during their

laboratory period as part of the course (Figure 5-7). The survey contained questions about

student use of the blocks and text modes (“Did you program in ‘Blocks’ mode since the end of

your previous lab?”) and perception of the effectiveness of the dual-modality instruction (“Does

instruction in dual blocks-text modes help you learn better?”), along with a free response prompt

(“Why do you feel this way?”). Students also completed three long-form perception surveys at

the beginning, midpoint, and end of the course with five-point Likert-scale evaluations to

105

measure their comparative perceptions of blocks and text (e.g., “I think programming in blocks is

easier than programming in text”). In addition, I collected logs from study participants via the

Java dual-modality IDE plugin (detailed in Section 5.2), which tracked usage of blocks, mode

switching, and time spent in each mode. Participants in all groups took the SCS1 at the end of the

course 5-10 days before the final examination. I evaluated performance through a combination of

scores on the SCS1 and score on course exams in terms of both overall scores as well as scores

by question type.

This study made use of lessons learned from my early work, especially my work with

middle school students (Section 4.3), to improve upon study design. The CS1 population was

composed primarily of students majoring in Computer Science and/or Engineering who are

personally invested in and driven to learn the material (unlike some students in middle school

study who found the technology courses uninteresting or boring). The population was also be

much larger (n=673) – which should reduce statistical noise and improve statistical rigor. The

study was over a longer time period (16 weeks instead of 5) and provided more time between

class meetings, allowing time for students to learn / iterate on content and develop skills through

practice.

Figure 5-7. Gantt chart showing date ranges for surveys, examinations, and SCS1 assessment.

106

5.5.2 Participants

This study’s data collection was classified as exempt by UF’s Institutional Review Board

(IRB). However, I still asked students who completed the SCS1 and demographic survey to

explicitly consent to having their scores and demographic data included in the study. No

compensation was provided to participants, but students who completed the SCS1 and

demographic survey received extra credit in the course. Students who did not participate were

offered an alternative assignment to earn the same amount of extra credit in the course. Students

who did not complete the SCS1 or demographic survey received the same instruction and in-

class programming assignments and took the same examinations, as these are part of ordinary

classroom activity assigned by the instructor. In all, 58.1% of the baseline group (n=144) and

59.1% (n=251) of the intervention group opted-in to the demographic survey, and their exam

scores were included in my analysis.

The COP3502 course is the first required course in the "Fundamentals of Programming”

sequence at UF; as such, this class has a mix of students with some prior experience and those

with none. Transfer students with programming coursework usually have CS1 waived as an

equivalency via transfer credit. 36.8% (n=53) of students in the baseline group and 40.2%

(n=101) in the intervention group had some prior programming experience; 19.9% (n=29) of the

baseline and 22.1% (n=94) of the intervention groups had taken the AP Computer Science or AP

Computer Science Principles courses in high school.

Participants came primarily from the young college student age range (18-22) and

represented diverse ethnic, racial, and gender backgrounds in both the baseline and intervention

groups due to the course’s size and the university’s demographics (Table 5-3). While the

populations are similar, there are some notable differences. There was a higher proportion of

107

men in the intervention group, and more intervention students indicated they were from white,

Asian, or multiple racial backgrounds.

Table 5-3. Demographic Groups by Condition
Demographic Group Baseline Intervention
Men 66.7%, n=96 74.9%, n=188
Women 33.3%, n=48 25.1%, n=63
Asian 27.8%, n=40 30.7%, n=77
Black / African American 11.1%, n=16 5.2%, n=13
Hispanic / Latino 20.8%, n=30 24.7%, n=62
Native American 0.0%, n=0 0.4%, n=1
Native Hawaiian / Pacific Islander 0.7%, n=1 0.4%, n=1
White, Non-Hispanic / Latino 49.3%, n=71 52.6%, n=132
Other 0.7%, n=1 1.6%, n=4
Multiple 7.6%, n=11 15.5%, n=39

5.5.3 Data Collection

I collected several types of data for this study which varied by condition. Initially, data

were collected along with contact information in order to facilitate follow-up interviews if

needed. Personally identifying information had been collected in order to link participant

responses to performance in the course during the study. Once this link had been created, the

data set was anonymized by removing all identifying and contact information to protect the

privacy of participants as much as possible.

5.5.3.1 Examinations, assessments, and demographic surveys

 I collected exam question scores from each participant via the university’s learning

management system (LMS). These examinations were purely text-based in both semesters, using

the same framework and modeled from exams in previous terms. The midterm exams – Exam 1

and Exam 2 – were non-cumulative, and the Final Exam was cumulative. Exam 1 and Exam 2

which were broken into two sections: a multiple choice / short answer section with definitional

and code reading questions, and a free response pseudocode section requiring code writing. As is

typical for this course, the Final Exam had only definitional and code reading questions; since

108

code writing questions require significant time for students to complete and instructors to grade,

it is logistically difficult to fit a hand-scored, rubric-based cumulative examination into the

allotted final exam blocks of two hours and also to have grading completed in time for grade

submissions.

I proctored the SCS1 at the end of the semester for both groups and recorded participant

responses. In addition, I collected demographic data from participants at the end of the same

computer-based survey. Participants completed the assessment and demographic questions in a

dedicated room over a period of one-hour fifty-five minutes. The SCS1 was voluntary, so a

subset of students opted to participate in this part of the study across the baseline and

intervention semesters (58.7%, n=395).

5.5.3.2 Perception surveys and usage logs

I collected answers to Likert-scale perception survey questions in each course module

(Appendix F), as well as download logs for online resources such as lecture slides. Additional

surveys were given at the beginning, midpoint, and end of the semester. A secure server was also

used to collect logs of how students used the plugin itself during the semester.

5.5.3.3 Bias control

In order to protect the integrity of data collection and prevent subconscious bias, neither

I, as the principal investigator and instructor, nor my advisors, had access to information about

who took or planned to take the SCS1 during either semester. Instead, this information was

controlled by the teaching assistants until after final grade submission. Once I had submitted

final grades for the course, the teaching assistants shared the assessment and participation data

that were collected so that it could be analyzed.

109

5.6 Analysis Methods: Dual-Modality Instruction and Learning

In this section, I describe the analysis methods I used to evaluate the data I collected, with

the findings and discussion following in Chapter 6.

To complete my dissertation work, I performed an analysis of the data collected in my

final study via several methods, including analysis of student scores, survey responses,

examination of student logs, coding of student responses, and review of instructor notes. This

allowed me to identify differences in dependent variables, such as overall computer science

knowledge and cognitive development level, according to independent variables – particularly

instructional condition, demographics, and experience (Table 5-4). These analyses were then

used to draw conclusions about how student knowledge differed between conditions (RQ1 &

RQ2) and student / instructor perceptions of the classroom experience (RQ3).

Analyses considered independent variables (Table 5-5) including instructional condition

(intervention / baseline), prior experience, and type of prior experience. Specifically, prior

experience was categorized as text-only, blocks (which may include some text experience), and

none.

Table 5-4. Measures by Research Question
Research Question Independent Dependent
RQ1 – Knowledge / Condition Instructional Condition

Demographics
Overall Knowledge
Material Use
Instruction Perception

RQ2 – Prior Experience Instructional Condition
Type of Prior Experience
Demographics

Overall Knowledge
Material Use
Instruction Perception

RQ3 – Perceptions of Experience Type of Prior Experience
Demographics

Material Use
Instruction Perception
Blocks & Text Perceptions
Instructor Perceptions

110

Table 5-5. Independent Variables
Measure Instrument
Prior Experience Type Background Survey
Demographics (Gender, Age, & Ethnicity) Background Survey
Instructional Condition (Intervention/ Baseline) None

5.6.1 Examinations and Assessments

To investigate student learning, I investigated scoring on course exam questions and the

SCS1. I broke down my analysis according to question type, which I also associate with the Neo-

Piagetian stages of development. This section focuses on the examination and assessment data

and what it reveals about student learning of programming between these two different

conditions.

5.6.1.1 Hypotheses & expectations

Examination and assessment scores were used to evaluate programming ability and

cognitive level in the Neo-Piagetian framework, which I used as the primary measures to identify

patterns in differences between the intervention and baseline conditions (Table 5-6). My

hypothesis was that dual-modality programming environments would help students develop the

ability to use abstraction and chunking, so I expected students to perform better on questions that

make use of them. Code reading and writing depend on chunking and abstraction and are

associated with concrete- and formal-operational reasoning [71, 32]. As such, within the

intervention group, and compared to the baseline group, I expected students would show higher

performance on code completion and tracing questions on the SCS1 and reading and writing

questions on course exams, which would suggest that they had developed expertise in chunking

and abstraction, and by extension had reached the concrete-operational stage of cognitive

development in the Neo-Piagetian framework. However, I believed the intervention was unlikely

to play a role in performance of tasks that depended on preoperational skill sets (those without

111

abstractions). Definitional questions depend on understanding of construct function, but not

abstraction or chunking; as a result, performance on such questions would not be significantly

impacted by the hypothesized advantage granted to abstraction-based questions by dual-modality

programming environments. As a result, I anticipated that students would score about the same

on definitional questions.

As with the analysis of conditions, my exploration of how prior experience and dual-

modality instruction interact used the examination scores when drawing conclusions. I explored

the interaction of prior programming experience type – text only, blocks, and none – and

condition with respect to assessment performance. I had hypothesized that, among students in the

intervention group, students with no experience would see the greatest positive difference in

knowledge compared to those in the baseline group, followed by students with blocks experience

(Table 5-7). I expected students with text experience to show the smallest differences in scoring

between conditions.

Table 5-6. RQ1 – Dual-Modality Instruction and Question Performance - Hypothesis
Question Type Intervention Baseline
SCS1: Definitional No difference No difference
SCS1: Tracing Higher than Baseline Lower than Intervention
SCS1: Code Completion Higher than Baseline Lower than Intervention
Course Exams: Definitional / Reading Higher than Baseline Lower than Intervention
Course Exams: Writing Higher than Baseline Lower than Intervention

Table 5-7. RQ2 - Dual-Modality Instruction vs. Text Instruction by Experience - Hypothesis
Question Type No Experience Blocks Experience Text-Only Experience
SCS1: Definitional No change No change No change
SCS1: Tracing Much Higher Somewhat Higher Slightly Higher
SCS1: Code Completion Much Higher Somewhat Higher Slightly Higher
Course Exams: Def. / Reading Much Higher Somewhat Higher Slightly Higher
Course Exams: Writing Much Higher Somewhat Higher Slightly Higher

112

5.6.1.2 SCS1 assessment questions

We collected student responses on the SCS1 assessment in order to compare student

performance in the baseline and intervention semesters. Students in both semesters were offered

the option to sit for the SCS1 assessment at the end of the semester for extra credit. All students

in both conditions took the same assessment, whose questions are categorized by type into

definitional, tracing, and code completion questions [98]. I computed overall scores on the SCS1

as well as scores by question type.

5.6.1.3 Course examination questions

In order to contrast code reading and code writing skills, we also collected student

responses and grades from course examinations. Midterm Exam 1 and Exam 2 had two sections

each – one with code reading and definitional questions (Figure 5-8) and another with a code

writing question (Figure 5-9) – while the Final Exam had only definitional and code reading

questions due to logistical limitations and grade deadlines.

Figure 5-8. Definitional (left) and code reading (right) question samples from Exam 1.

113

Figure 5-9. Code writing question from Exam 1 (abbreviated).

For the course exam definitional and code reading questions, not all question topics and

formats appeared across semesters due to exam date variation. To eliminate these differences as

a confounding factor, I identified a subset of questions for Exam 1, Exam 2, and the Final Exam

that were in common across semesters (Table 5-8). While Exam 1 and the Final Exam had nearly

or exactly the same number of questions, Exam 2 differed in length: the baseline group’s exam

was shorter. For Exam 1, 10 of 16 (62.5%) questions from the baseline semester overlapped with

10 of 15 (66.7%) questions from the intervention semester, while for Exam 2, 5 of 10 (50%)

questions in the baseline overlapped with 5 of 16 (33.3%) in the intervention term. Finally, on

the Final Exam, 11 of 16 (68.8%) questions overlapped between the exams.

Table 5-8. List of Topics in Common by Exam
Midterm 1 Midterm 2 Final
Instructions Classes Instructions
Arithmetic Encapsulation Arithmetic
Selection Overloading Data Types
Data Types Inheritance Functions
Functions Overriding Arrays
Arrays Loops
References Versioning
 Data Streams

114

The code writing exam section questions were isomorphic variants of one another

between semesters; that is, they required employing the same skills and tested the same concepts.

For example, on the first midterm in both classes, the code writing section required students to

write and invoke simple methods and engage in console I/O. By the same token, on the second

midterm for both classes, the writing section required writing and extending classes, overloading,

and overriding. As such, I was able to directly compare the results. As with the definitional /

code reading section, I calculated percentage scores for each exam before comparison.

5.6.1.4 Analysis tests

Once I had collected the scores from all of the exams and assessments for overlapping

questions, I compared the scores in the baseline group to those in the intervention group. As the

scores did not follow a normal distribution, I employed the non-parametric two-tailed Mann-

Whitney U test [93] to compare the groups. Further, I calculated the eta-squared (η2) value to

identify the effect size and report it with my findings.

In order to identify interactions between students with different prior experience levels –

those who have worked previously only in text, those who have worked in blocks, and those with

no prior experience – I used Aligned Rank Transform (ART) [137] to transform the data and

make it suitable for use with ANOVA. When interactions were significant, I also performed

interaction contrasts to identify differences in scoring by condition dependent on differences in

experience [79].

5.6.2 Surveys, logs, and notes

In this study, I used several measures to collect sets of qualitative and quantitative data

via surveys (Table 5-9). These included Binary, Likert, and Free Response questions. In this

section I describe the methods I used to analyze these data sets.

115

Table 5-9. Dependent Variables
Measure Instrument Data Collected Analysis
Material Use Plugin Logs

Canvas Logs
Sessions
Frequency of Use

Time Series
Time Series

Instruction Perception Module Survey

Mid-Post Survey

Binary Response
Free Response
Likert Response
Free Response

Time Series
Codes
ANOVA
Codes

Blocks & Text Perceptions Pre-Mid-Post Surveys Likert Response
Free Response

ANOVA
Codes

Instructor Perceptions Notes Text Review

5.6.2.1 Qualitative data

I collected qualitative data from survey answers to free response prompts. Of the 252

students who completed the demographic survey, I qualitatively coded responses from these

prompts for a sample of 63 (25.0%) students. I selected these students to maximize coverage of

ethno-racial, age, educational level, gender, demographic and experience groups. I coded the

responses in modules 1, 3, 4, 7, and 11. Modules 1 and 11 were included as they are the first and

last module surveys, respectively; 3 and 4 were selected because they cover programming

fundamentals (loops, data types, and functions) just before Exam 1; and I coded module 7 as it

covered the period in which I changed the instructional approach from dual-mode to text-only

instruction. I completed the coding in a four-step process. In the first step, to establish an initial

set of codes for the responses, I used the qualitative coding approach described by Auerbach and

Silverstein to develop a list of repeating ideas and refine them via iteration [4]. In the second

step, two other researchers and I independently coded responses from three participants and

discussed disagreements in order to refine the codebook. We adjusted some codes based on the

discussion, and we also combined codes we determined overlapped significantly. In the third

step, the other researchers and I coded an additional 8% of the samples, which I used to perform

an inter-rater reliability analysis using Fleiss kappa [47]. Finally, in the fourth step, I coded the

116

remaining samples to complete the data set. The average agreement between coders was Fleiss

kappa = 0.601, which is characterized as moderate agreement [128] .

5.6.2.2 Quantitative data

I collected quantitative data from several measures, including Likert and binary responses

to survey questions, and logs from the plugin and Canvas. Likert scores were analyzed via

ANOVA [44] to identify differences between the baseline and intervention groups. I plotted

responses to module (weekly) questions about material use, perceptions of dual-modality

instruction, and plugin and Canvas logs by module in a time series so that they could be

compared time-wise for triangulation [22].

5.6.2.3 Surveys

Survey responses were used to provide insight into student perceptions and the

relationship between the condition of instruction and the overall classroom experience of

students. I analyzed module surveys to elicit patterns in student perceptions of dual-modality

instruction. For module surveys, I examined responses to detect differences in perceptions over

time and also considered them in the context of differences in usage patterns for the dual-

modality IDE plugin and materials.

5.6.2.4 Usage logs

Plugin and Canvas resource logs were examined to identify trends in student use of

scaffolding. Plugin logs were evaluated to identify programming sessions, while Canvas resource

logs were examined to determine frequency of use. I sought to identify how often students used

the dual-modality IDE plugin and materials in order to more clearly link the dual-modality

programming environments to differences in knowledge, cognitive level, and perceptions. I also

explored how often students switched between blocks and text. I examined logs in segments by

module to help me identify changes that occurred over the course of the term.

117

To identify usage of lecture slides on Canvas, I identified a two-week timeframe for each

set of slides that covered the introduction, conclusion, and first quiz or exam covering the topic

(Table 5-10). If access to the slide set occurred within this coverage window, I marked the slides

for that module as having been used by the student for the purposes of this analysis. For plugin

usage, I identified a window covering the beginning of the module to the end of the module

(corresponding to the beginning of the next module – Table 5-11), and if the plugin was used in

that time window for interactive events (such as using blocks or switching modes), the plugin

was marked as being used by the student. Interactive plugin events were grouped into the

categories of “Block Use”, “Palette Viewing”, and “Mode Switching” for the analysis (Appendix

K). Palette Viewing actions were those in which the student selected a category of blocks to

view (such as “Control”, “Classes”, or “Variables”); Mode Swapping was logged whenever a

student switched from blocks to text mode or vice versa; and Block Use actions are those in

which a student selected (dragged) a programming block and/or placed (dropped) a block within

the program window. For each module, I then calculated the percentage of students who used the

lecture slides and plugins. I also calculated the average percentage of students using the lecture

slides and plugin over all module time windows.

Table 5-10. Time Window for Lecture Slide Usage by Module
Module Date Range
0 2018/08/22 – 2018/09/04
1 2018/08/29 – 2018/09/11
2 2018/09/05 – 2018/09/18
3 2018/09/12 – 2018/09/25
4 2018/09/19 – 2018/10/02
5 2018/10/03 – 2018/10/16
6 2018/10/10 – 2018/10/23
7 2018/10/17 – 2018/10/30
8 2018/10/24 – 2018/11/06
9 2018/11/07 – 2018/11/20
10 2018/11/14 – 2018/11/27
11 2018/11/28 – 2018/12/11

118

Table 5-11. Time Window for Plugin Usage by Module
Module Date Range
0 2018/08/22 – 2018/08/28
1 2018/08/29 – 2018/09/04
2 2018/09/05 – 2018/09/11
3 2018/09/12 – 2018/09/18
4 2018/09/19 – 2018/10/02
5 2018/10/03 – 2018/10/09
6 2018/10/10 – 2018/10/16
7 2018/10/17 – 2018/10/23
8 2018/10/24 – 2018/11/06
9 2018/11/07 – 2018/11/13
10 2018/11/14 – 2018/11/27
11 2018/11/28 – 2018/12/11

5.6.2.5 Instructor notes

Instructor notes were used to provide insight into the instructor’s (i.e., my) perspective of

the classroom experience when using dual-modality instruction. These notes helped establish

relationships between instructor observations and student experience.

5.6. 3 Summary

Through analysis of the study data, I attempted to answer questions regarding dual-

modality instruction (intervention) and its connection to student learning and perceptions as

compared to text-based instruction (baseline). In addition to examining the overall connection

between the instructional approach a student knowledge, I also examined the role prior

experience plays – including the differences between prior experience in blocks and text-only

programming. When analyzing results, I examined student use of the dual-modality IDE plugin

and materials to verify that students did indeed make use of them. Finally, I examined the impact

of using dual-modality tools and curricula on the classroom experience and detailed student and

instructor perceptions, including receptiveness, perception of effectiveness, and appropriateness

for various programming topics. In Chapter 6, I discuss the findings of these analyses and

discuss their implications.

119

CHAPTER 6
LEARNING & DUAL-MODALITY INSTRUCTION: FINDINGS & DISCUSSION

In this chapter I describe the findings of my study on the use of dual-modality instruction

in UF’s CS1 course. This chapter is organized in parts by research question. Section 6.1

describes the findings and implications of RQ1, in which I compare the performance differences

between students in the baseline (traditional, text-based instruction) and intervention (dual-

modality instruction) semesters. Section 6.2 describes the findings and implications of RQ2, in

which I examined connections between prior programming experience and instructional

condition (traditional, text-based vs dual-modality instruction). Section 6.3 describes the findings

and implications of RQ3, which is focused on student and instructor perceptions when utilizing

dual-modality instruction. Finally, Section 6.4 summarizes my findings from the research study.

6.1 Performance Comparison in Dual-Modality vs Text Instruction

To answer my first research question (RQ1) – “How do students perform in code reading

and writing after learning with dual-modality instruction, as compared to students learning with

traditional (text-based) approaches to instruction in CS1 courses?” – I compared student

performance on exams and assessments. This included midterm Exam 1, midterm Exam 2, and

the Final Exam, as well as the SCS1 assessment taken at the end of the semester. In this section I

outline my findings for each examination and assessment.

6.1.1 Course Exam Results

I evaluated student performance on the course exams according to exam section question

types (i.e., definitional / reading or writing). I used the Mann-Whitney U Test to analyze the

exam scores due to their non-normal distribution. Course midterm exams were divided into two

sections – one section included code reading and definitional questions (Section 5.6.1), while the

120

other section had code writing questions. The Final Exam had only code reading and definitional

questions. In this section I examine these sections individually.

6.1.1.1 Code reading & definitional questions

For the code reading / definitional sections, I compared questions on topics shared

between the exams (e.g., Arithmetic, Data Types, and Classes – see Table 5-8). On these

questions, students in the intervention group, which learned via dual-modality instruction, scored

higher on both midterm exams than the baseline group, which learned via text instruction, and

the difference between the groups on both exams was statistically significant (α=0.05). On Exam

1, the intervention average (μintervention=85.4%) was higher than the baseline average

(μbaseline=58.3%) with a large effect (, and once more the result was significant (α=0.05) when

comparing the groups (Z=-4.1, p<.001, η2=0.03). In summary, the students in the intervention

group outperformed the students in the baseline group in every code reading / definitional section

of the course exams (Table 6-1). I discuss these findings further in Section 6.1.3.

6.1.1.2 Code writing questions

The code writing sections of the exams tested the same content across semesters, with the

intervention semester using isomorphic variants of questions from the baseline semester. In these

sections, I saw significant differences between the conditions on Exam 1, but on Exam 2 I did

not. For Exam 1, students in the intervention group (μintervention=76.1%) scored significantly

higher (α=0.05) than those in the baseline group (μbaseline=68.9%) with a small-to-medium effect

size (Z=-4.3, p<.001, η2=0.03), while for Exam 2, means were not statistically different

(μbaseline=68.0%, μintervention=68.7%, Z=-0.2, p=.826, η2=0.00). In short, the intervention group

outperformed the baseline group on the code-writing section of Exam 1, taken earlier in the

semester, but not on the code-writing section of Exam 2, taken later in the semester (Table 6-1).

121

Table 6-1. Results Summary for Course Exams (Scores as Percent)
Questions Baseline μ, σ Intervention μ, σ P-val. Z η2
Exam 1 – Def. & Reading 58.3, 17.3 85.4, 13.9 <.001 -16.4 0.41
Exam 1 - Writing 68.9, 25.0 76.1, 24.4 <.001 -4.3 0.03
Exam 2 – Def. & Reading 72.7, 19.8 76.4, 18.6 <.001 -2.8 0.01
Exam 2 - Writing 68.0, 29.5 68.7, 25.8 0.826 -0.2 0.00
Final Exam 65.8, 18.3 72.0, 15.5 <.001 -4.1 0.03

6.1.2 SCS1 Results

To compare the results on the SCS1 assessment across the intervention and baseline

conditions, I used the Mann-Whitney U Test as the scores did not follow a normal distribution.

The results from the SCS1 assessment did not differ significantly between the baseline group,

who learned via text instruction, and the intervention group, who learned via dual-modality

instruction (Table 6-2). In other words, there was no meaningful difference in the scores of the

baseline and intervention group on the overall SCS1 score, despite the baseline students scoring

1.5% higher than the intervention group. There was also not meaningful difference by question

type. This may be related to the attributes of the specific SCS1 questions (e.g., discrimination

factor and difficulty), which I discuss in Section 6.1.3.

Table 6-2. Results Summary for SCS1 (Scores as Percent)
Questions Baseline μ, σ Intervention μ, σ P-val. Z η2
SCS1 - All 51.6, 18.9 50.1, 18.0 0.46 -0.7 0.00
SCS1 – Definitional 58.8, 19.4 57.5, 20.1 0.64 -0.5 0.00
SCS1 – Tracing 52.1, 21.2 49.9, 21.4 0.25 -1.2 0.00
SCS1 – Completion 43.8, 26.1 43.0, 23.3 0.79 -0.3 0.00

6.1.3 Performance Comparison Discussion

I had hypothesized that students would learn more effectively under dual-modality

instruction, as it supports and scaffolds student learning of abstraction and chunking. As

abstraction and chunking are critical to later stages of cognitive development [71], I believed

students would score higher on exams and assessments in the dual-modality instructional

122

condition. My results show that students in the intervention group outperformed students in the

baseline group on questions dependent on concrete- and formal-operational reasoning for most

course exam sections, but not on the SCS1. In this section I detail these results by assessment,

exam, and section.

6.1.3.1 Course Exam performance comparison discussion

When I compared scores from questions covering shared topics across semesters on in-

class examinations, scores between the groups differed significantly on both the definitional /

code reading section and writing section of Exam 1. All topics from Exam 1 (Section 5.6) were

covered using dual-modality instruction. As such, I expected students in the intervention to

outperform students in the baseline group, and that is what I found for both the definitional /

code reading as well as the code writing sections of the exam.

On Exam 2 and the Final Exam, the intervention group outperformed the baseline group

on the definitional / code reading sections, though to a lesser degree than on Exam 1. It is notable

that the definitional / code reading sections of both Exam 2 and the Final Exam included a mix of

topics covered in dual blocks-text instruction (using dual-modality representations) and pure-text

instruction (using only text representations). As such, I would expect to see less of a difference

between the groups in these sections. In line with these expectations, compared to Exam 1, the

average scores on Exam 2’s and the Final Exam’s definitional / code reading sections were

closer between the baseline and intervention groups, though the differences were still statistically

significant. Further, Exam 2’s definitional / code reading section had fewer questions in the

baseline semester, but the exam was given in the same amount of time, giving baseline students

more time per question. Despite this advantage, students in the intervention semester scored

higher than students in the baseline semester.

123

By comparison, there was not a significant difference on the code writing section of

Exam 2. The topic of the code writing section of Exam 2 was inheritance; this topic was not

covered by the dual-modality instruction and instead was taught exclusively in text, because it

was necessary to transition students entirely to text before the end of the course. For this reason,

I did not develop visualizations for inheritance relationships in Droplet. In other words, for those

exam sections which included topics covered exclusively in text instruction, there was not a

difference in scores.

In summary, considering the exams over time, a consistent pattern emerges. Students in

the intervention group outperformed those in the baseline group on every section of every exam

that incorporated content that was covered in the dual-modality instruction; only Exam 2’s code

writing section, which exclusively covered material that only used text-mode instruction, did not

show significant differences in scores. In addition, the performance differences extended through

to the Final Exam, which covered topics from Exam 1 and Exam 2. These differences were not

limited to the time period of the dual-modality instruction but persisted to the end of the course,

even after the change to text-only instruction. In other words, in line with my hypothesis, when

tested on topics covered by dual modality instruction, students scored better in the intervention

than the baseline; when I tested on topics covered exclusively in text, the students in the two

conditions scored about the same as one another. This suggests that the concepts covered in

dual-modality instruction were clearly anchored in students' minds, and as a result, they retained

this knowledge through to the end of the course.

When comparing scores between the baseline and intervention groups, it is useful to do

so within the Neo-Piagetian framework for novice programmers [71]. This allows us to review

my results in terms of cognitive stages of development. Students can trace and write simple,

124

individual lines of code at the pre-operational level. However, reading and writing multi-line,

complex blocks of code – such as those present in the course exams – is tied to students’ abilities

to recall and apply chunks [113, 45] and engage in higher-level reasoning (e.g., abstraction) [73].

This reasoning about abstract meaning is in line with the Neo-Piagetian framework’s concrete-

operational stage (applying abstractions to familiar situations) and formal operational stage

(applying abstractions to unfamiliar situations). On the reading and writing sections of the

exams, the students in the intervention scored higher than those in the baseline group. Thus, I

concluded that students in the intervention group were more often functioning at the concrete and

formal operational reasoning stages when compared to the baseline group.

6.1.3.2 SCS1 performance comparison discussion

In my study, I found that the SCS1 did not help distinguish between the baseline and

intervention group – as both groups scored near 50% – despite the large sample size. As a result,

the SCS1 data did not help me evaluate whether student learning was different in the baseline

and intervention group. The authors of the SCS1 determined in their work that the SCS1

questions overwhelmingly skewed to hard levels of difficulty, and most questions they classified

as fair, but not good, in their effectiveness at discriminating between students of different ability

levels [98]. Thus, in my study, the lack of difference in and general low value of the scores on

the SCS1 between the baseline and intervention groups may be due in part to the SCS1’s

difficulty and limited capacity to discriminate between students of different ability levels.

The results on the SCS1 contrast with my findings on the course exams. In particular, I

had anticipated that the subset of questions identified as “code-completion” questions by the

assessment’s authors [98] would align with the code writing sections of the exams, but they did

not. This may be due in part to the fact that, while the code completion questions on the SCS1

are multiple choice and scored as either “right” or “wrong”, the course exam questions were free

125

response pseudocode questions. These free response questions were graded with a rubric to

award partial credit, capturing more nuance in scores regarding student understanding. In

addition, the course exam questions were developed to address the specific topics covered in the

course, including some topics that were not covered by the SCS1 (e.g., object-oriented

programming), though all SCS1 topics were covered in the course.

6.1.4 Performance Comparison Summary

In this study, I investigated student learning and dual-modality instruction using course

examinations and the SCS1 assessment. I had expected to see differences in groups through both

the course exams and SCS1. My analysis showed differences between the intervention and

baseline groups in the course exams, but not the SCS1. When considering the course exams,

students in the intervention group outperformed those in the baseline group on every section of

every exam that incorporated content that was covered in the dual-modality instruction. These

questions involved code reading and code writing. Code reading and writing are built on the

ability to recall patterns via chunking and engage in abstraction; these skills are central to the

later stages of cognitive development in the Neo-Piagetian framework – namely, concrete

operational reasoning and formal operational reasoning. However, as noted, I did not see

differences in the SCS1 assessments; this may be related to the SCS1’s shortcomings in

discrimination ability and high difficulty, as noted by the SCS1’s authors, as well as differences

in topic coverage and free response question grading in the course exams versus the exclusively

multiple-choice approach of the SCS1. Thus, the SCS1 may not yield a complete picture of the

knowledge and abilities of the students in this particular course.

This work has important implications regarding student learning in early course science

courses such as a typical CS1 course. Prior work by Corney et al [32] found that most students

who complete a typical CS1 course are at the preoperational or early concrete operational stages;

126

as Corney et al point out, those students at the preoperational stages are “woefully under-

prepared” for traditional programming assignments – those which students are likely to

encounter increasingly in coursework. The higher performance among students in the

intervention group compared to the baseline group on questions focused on skills fundamental to

these later Neo-Piagetian stages suggests that dual-modality instruction may help students

progress beyond the preoperational stage and master concrete-operational thinking, thus

preparing them for programming tasks they are likely to see in advanced courses and the

industry.

The results on the SCS1 also merit consideration. Based on the results from this study, as

well as the evaluations of the authors of the SCS1, there are limitations to the SCS1 (e.g.,

difficulty, discrimination, and binary responses). As a result, the SCS1 may not be well-suited

for some populations of students. I discuss these in further detail in Section 6.2.3.

6.2 Performance Comparison by Prior Experience

My second research question (RQ2) focused on the relationship between instructional

condition and prior programming experience: “How does prior programming experience affect

students learning in dual-modality instruction as compared to students learning in traditional

(text-based) approaches to instruction in CS1 courses?” To explore the relationship between

prior experience and instructional condition, I analyzed the interaction between course

examination section (code definition / reading and code writing) and the SCS1 assessment scores

and type of prior experience – text only, blocks, or none. In this section I outline my findings

among these interactions.

6.2.1 Course Exam Results

I analyzed the exam sections (code definition / reading and code writing) separately when

investigating interactions between the instructional condition and prior programming experience.

127

I expected to see differences between reading and writing questions, which depend on more

advanced skills (e.g., chunking, recall, and abstraction) associated with later cognitive

development states (e.g., concrete- and formal-operational reasoning). To identify the interaction

between condition and type of prior experience, I used Aligned Rank Transform (ART) [137] to

transform the non-parametric data into suitable form for use with ANOVA and performed

interaction contrasts. In this section I describe these results.

6.2.1.1 Code reading / definitional questions

For the questions on topics shared between midterm exams (i.e., Exam 1 and Exam 2)

that focused on definitions and code reading, there was no significant interaction between the

instructional condition and type of prior experience (e.g., text-only, blocks, or none) with respect

to the exam scores (Table 6-3). However, on the Final Exam, which was composed of only code

reading and definitional questions, I found an interaction between prior experience type and

condition with respect to exam score on question topics shared between the baseline and

intervention semesters (F2,360=4.4, p=.013, η2=0.02) (Table 6-3). In particular, there were

differences between students with no prior experience and those with prior experience

between conditions (Table 6-4, Figure 6-1):

• Students with prior text-only experience scored higher in the intervention (μ=79.2,
σ=13.2) than those in the baseline (μ=66.5, σ=16.7) (p<0.001);

• Students with prior blocks experience scored higher in the intervention (μ=74.8, σ=13.9)
than those in the baseline (μ=58.8, σ=17.4) (p<0.001);

• Students with no experience scored similarly between the conditions; and

• There was no significant difference between students with blocks and text experience
between conditions.

128

In other words, on the Final Exam, students with prior experience – whether blocks or

text – scored higher in the intervention group than the baseline group. However, among those

with no prior experience, the scores were about the same in the two condition groups.

Table 6-3. Course Exam Interactions: Condition x Experience
Questions F2,360 P-val. η2
E1 – Definitional & Reading 1.9 0.138 0.01
E1 - Writing 5.7 0.003 0.03
E2 – Definitional & Reading 1.0 0.362 0.01
E2 - Writing 3.8 0.023 0.02
Final Exam 4.4 0.013 0.02

Table 6-4. Mean & Standard Deviation, Final Exam: Condition x Experience
 Baseline Intervention
Prior Experience Mean (μ) Std. Dev. (σ) Mean (μ) Std. Dev. (σ)
None 66.4 17.4 69.1 16.6
Blocks 58.8 17.4 74.8 13.9
Text-Only 66.5 16.7 79.2 13.2

Figure 6-1. Boxplot of Final Exam scores by condition and prior programming experience.

129

6.2.1.2 Code writing questions

On the writing sections of both midterm examinations, the interaction between prior

experience types and condition with respect to exam score was significant, even when a main

effect was not present (Table 6-3, Appendix J) – that is, even when overall I did not see a

difference between the condition groups, when I examined performance broken out by the

students’ prior experience (text-only, blocks, or none), there were differences.

For Exam 1’s code writing section, on which there was a main effect of the condition

overall, the interaction between condition and prior experience was significant (F2,360=5.7,

p=.004, η2=0.03) (Figure 6-2). The difference between conditions among students with only

prior text experience was significantly different than the difference between conditions among

students with blocks experience (p=.012). Likewise, the difference between conditions among

students with only prior text experience was significantly different than the difference between

conditions among students with prior experience (p=.012).

Specifically, there were differences between students with text-only experience and

those with no experience or experience in blocks between conditions (Table 6-5, Figure 6-2):

• Students with prior text-only experience scored higher in the intervention (μ=89.2,
σ=15.0) than those in the baseline (μ=70.6, σ=23.6) (p<0.001);

• Students with prior blocks experience scored similarly between conditions;

• Students with no experience scored similarly between the conditions; and

• There was no significant difference between students with no experience and those with
blocks experience between conditions.

In summary, the students with only prior text experience performed better in the

intervention group on Exam 1’s code writing section, but there were no differences between the

conditions for students with blocks experience, nor for those with no experience.

130

Table 6-5. Mean & Std. Deviation, Exam 1, Writing: Condition x Experience
 Baseline Intervention
Prior Experience Mean (μ) Std. Dev. (σ) Mean (μ) Std. Dev. (σ)
None 60.7 22.8 60.8 25.9
Blocks 79.7 29.6 84.6 17.5
Text-Only 70.6 23.6 89.2 15.0

Figure 6-2. Boxplot of Exam 1 writing scores by condition and prior programming experience.

While analysis of Exam 2’s code writing section did not exhibit significance overall with

respect to condition, there was nevertheless a significant interaction between condition and prior

experience with respect to exam score (F2,360=3.8, p=.023, η2=0.02) (Figure 6-3). There were

differences between students with only prior text experience and those with no prior experience

(p=.021). Additionally, students with no prior experience did slightly worse in the intervention

group compared to the baseline group (Table 6-6):

• Students with prior text-only experience scored similarly between conditions;

• Students with prior blocks experience scored similarly between conditions;

131

• Students with no experience scored slightly worse in the intervention (μ=58.1, σ=25.9)
than in those in the baseline (μ=67.6, σ=27.2) (p=0.023); and

• There was no significant difference between students with blocks experience and text-
only experience between conditions.

In short, the students with prior experience – blocks and/or text – performed about the

same in the intervention and baseline groups on Exam 2’s code writing section, but students with

no prior experience performed more poorly.

Table 6-6. Mean & Std. Deviation, Exam 2, Writing: Condition x Experience
 Baseline Intervention
Prior Experience Mean (μ) Std. Dev. (σ) Mean (μ) Std. Dev. (σ)
None 67.6 27.2 58.1 25.9
Blocks 74.4 24.5 74.9 22.6
Text-Only 69.5 30.5 78.5 18.8

Figure 6-3. Boxplot of Exam 2 writing scores by condition and prior programming experience.

132

6.2.2 SCS1 Results

To identify interactions between condition and type of prior experience on the SCS1, I

used Aligned Rank Transform (ART) [137] to transform the data and then performed interaction

contrasts. There was no significant interaction between the instructional condition and type of

prior experience with respect to the results from the SCS1 assessment (Table 6-7, Appendix J),

mirroring the results I found when examining the main effect between the intervention and

baseline conditions. This was true on the over assessment scores, as well as scores I computed by

question type (definitional, tracing, and code completion) on the SCS1. In other words, I did not

find any difference between students with different types of prior programming experience on

the SCS1 assessment.

Table 6-7. SCS1 Interactions: Condition x Experience (See Appendix J for Means / Std. Dev.)
Questions F2,360 P-val.
SCS1 - All 1.8 0.170
SCS1 – Definitional 0.4 0.683
SCS1 – Tracing 0.3 0.707
SCS1 – Completion 2.3 0.100

6.2.3 Prior Experience Discussion

I hypothesized that those students with no prior experience would have the most to gain

from the scaffolding and cognitive support provided by dual-modality programming

environments (e.g., construct visualization and association of blocks with text syntax), as they

would have limited mental models of programming constructs and algorithms; in other words,

those with no experience would be at the sensorimotor stage in the Neo-Piagetian Framework for

novice programmers [71]. On the other hand, I had hypothesized that those with prior text

experience would stand to gain the least, as prior to taking the class, they would already have

established mental models of text-based constructs which they could depend on and recall – they

133

would be more likely to be at the concrete-operational or formal operational stages of the Neo-

Piagetian framework.

While those in the intervention group overall scored higher on most exams than those in

the baseline group, I most consistently saw significant differences among those with prior text

experience, and least among those with no experience. This is a contradiction of my hypothesis:

I had expected students with less experience to gain the most from the intervention, and that

those with the most experience would benefit the least. I now believe that the students with prior

experience performed higher in the intervention because of reinforcement of existing mental

models which helped students with prior experience move from concrete-operational to formal

operational stages of expertise. In this section, I will discuss the implications of my findings on

the interaction of prior experience type and condition.

6.2.3.1 Course exam discussion

While those in the intervention group scored significantly higher than those in the

baseline group overall, I saw greater and more frequent differences between the students with

prior text experience when comparing the baseline and intervention conditions than those

students with no prior experience or experience in blocks. This was contrary to my hypothesis

that those with the least experience would show the greatest positive difference between the

intervention and baseline group – i.e., that those students with the least prior experience in the

intervention group would outperform those in the baseline group by the greatest margin. I saw

higher performance differences among those with text experience on the written portion of both

midterm examinations (Exam 1 and Exam 2) and the final examination (Final Exam). In other

words, while student scores overall were higher on most examinations in the intervention group

compared to the baseline group, the difference was most stark among those with prior text

experience. While I had hypothesized that students with no experience in the intervention would

134

outperform those in the baseline, on the writing sections and final examination, their differences

compared to the baseline group were smaller than those with prior programming experience.

Additionally, I had previously hypothesized that there would be difference on code reading

sections of the exams, but there was no significant interaction on the definitional and code

reading sections of the midterm examinations.

Perhaps as one might expect, students with no prior experience lagged behind those with

experience on the Final Exam, but at the same level in the baseline and intervention. However,

my analysis provides evidence that suggests students with prior blocks experience performed on

about the same level as those students with text-only experience at the Final Exam in the

intervention, and better than those in the baseline. This suggests that dual-modality instruction

may provide students support in reaching the same levels of expertise as those who learn

exclusively in text by the end of a CS1 course. This also suggests that dual-modality instruction

may be a viable instructional approach.

On Exam 1’s code writing section, students with text-only experience performed better in

the intervention. With respect to these differences, it is prudent to consider the expertise level of

these students, their cognitive level, and how it might impact learning. While code reading and

writing both depend on abstraction and chunking, there are differences in how they are

employed. Code writing depends on chunk-based recall of concepts and patterns which are used

to construct new code to solve a problem or build functionality [45]. By comparison, code

reading questions rely on recognition of constructs in order to trace and understand how a

program functions which can lead students to develop a mental model of a program and its

function [91]. Dual-modality instruction scaffolds learning by helping students chunk code into

meaningful functional pieces, which may help learners without experience develop this

135

recognition effectively and may also help those with prior experience reinforce their pre-existing

mental models of programming. However, this scaffolding – which helps students chunk code –

was not available on examinations. Students with no prior experience may not have sufficiently

developed the chunk-based recall mechanisms employed by experts [45]. I believe that the more

experienced learners were able to rely on their more-refined existing mental models for chunk-

based recall during Exam 1.

Exam 2’s results are warrant reflection, as those with prior experience performed the

same in both instructional conditions, but those with the least experience performed slightly

worse in the intervention than the baseline condition. The differences between those with and

without experience may rise from the timing of the end of the dual-modality instruction, which

coincided with this exam. Though evidence I have presented suggests that students with prior

experience may benefit from the scaffolding and cognitive support provided by dual-modality

instruction, due to their previous experience, they had existing mental models they could depend

on in addition to the dual-modality scaffolding. However, it may be that students with no prior

experience were disadvantaged by losing a scaffolding that they had come to know and use in

their learning of computer science too soon.

The Final Exam went beyond the material covered in Exam 1, which was covered

exclusively in dual-modality instruction, and Exam 2 which was covered partially in dual-

modality instruction, to content covered only in text, as the tools and environments in my study

did not have blocks representations for advanced concepts such as programming paradigms and

memory management. On the Final Exam, which comes at the end of the course, I found that

students with no prior experience in the control and intervention semesters were similar, as they

were in Exam 1. This may be because those students with no prior experience continued their

136

cognitive development and adapted to text instruction in the final weeks of the class as they spent

more time without the dual-modality scaffolding. Prior studies have shown that students working

in dual-modality programming environments become less dependent on blocks representations

over time [9], and as experienced students would have begun the term with more knowledge than

those new to programming, I would have expected them to grow beyond dependence on the

scaffolding provided by the dual-modality programming environments sooner – in some cases,

and in larger proportion, before the Final Exam, compared to those with no prior experience. It is

important to note that in the absence of dual-modality instruction, I would have expected a

similar pattern – i.e., students with more experience would make more rapid progress than those

without experience in a typical classroom setting. Nevertheless, students in the intervention

overall outperformed those in the baseline on all code reading exam sections, suggesting that

students without experience may also have also benefited from the intervention.

6.2.3.2 SCS1 discussion

Like the overall comparison between the intervention and baseline conditions (RQ1), I

did not find any significant interactions in the SCS1 assessment scores. This was true even when

I found interactions on the course examinations. As a result, I was not able to draw conclusions

about the answer to my research questions from this analysis.

As noted in Section 6.1.3, the SCS1 has high difficulty, only fair discrimination ability,

and does not allow for partial credit [98]. In addition, the SCS1 uses a pseudocode language [98]

that is distinct from the language students learned in the course (Java). These aspects of the

SCS1 suggest there may be room for future CS concept inventories to build upon the work of the

SCS1, and the work in this study, to investigate refinement of question styles and approaches.

While the SCS1’s pseudocode was intended to make the SCS1 broadly applicable in computer

science instructional contexts using various programming languages [122], its syntax is based on

137

markup-style opening and closing keywords for code section in functions and loops (e.g.,

“WHILE condition … ENDWHILE”). This is very different from Java’s C-based curly braces

style (“while condition {….}”), which makes the syntax potentially challenging for student who

learn using C-family languages. Future concept inventories might be more effectively tailored to

language families (e.g., C-family) to reduce the cognitive load of learning and applying a new

syntax while taking an assessment. The increase in cognitive load is especially problematic when

attempting to measure learning of novices, as those with little or no experience are less likely to

have developed nuanced chunking mechanisms that allow experts to effectively transfer

knowledge from one programming language to another [118]. Additionally, some topics – such

as object-oriented programming – are commonly covered in CS1 courses, like UF’s, but these

constructs are absent from the SCS1 and its predecessor, the FCS1 [122]. Integration of basic,

common object-oriented principles – such as methods and attributes – into concept inventories

like the SCS1 would allow instructors to test a broader spectrum of generally-accepted CS1

topics.

6.2.4 Performance Comparison by Prior Experience Summary

When investigating interactions between prior programming experience and instructional

condition (dual-modality or text instruction), I found interactions on the code writing sections of

Exam 1 and Exam 2, as well as the Final Exam, which was limited to code reading and

definitions. I found no interactions on code reading / definitional sections of Exam 1 or Exam 2.

Specifically, on the code writing sections Exam 1, there was a significant positive

difference between the intervention and baseline students with only text experience – i.e., those

students with prior text experience performed significantly better in the intervention semester.

This was contrary to my hypothesis – I had hypothesized that students with prior text experience

would have more developed mental models of programming, and as a result I anticipated that

138

they would have less to gain from the scaffolding. Instead, this group performed the strongest in

the intervention when compared to the baseline. On the writing section of Exam 2, the students

without experience performed slightly worse in the intervention compared to the baseline,

suggesting that more time with the scaffolding provided by dual-modality instruction may have

benefited them. On the Final Exam, among those prior experience, text-only or blocks, there was

a greater positive difference between the intervention and baseline groups – i.e., students with

experience performed significantly better in the intervention group – and the students with no

prior experience performed about the same in the intervention and baseline.

Considering the results in the context of the Neo-Piagetian framework [71] and its

connection to abstraction and chunking, we can find suggestions as to the reason for these

results. While reading and tracing code requires students to be able to recognize constructs and,

especially for large programs, to develop mental abstractions of sections of code [73], writing

code additionally requires students to recall constructs and abstractions from memory [45]. In

other words, code reading depends on skills associated with concrete operational reasoning

(reasoning abstractly about familiar situations), including developing abstractions of code they

can see. By comparison, code writing depends on skills associated with formal operational

reasoning (reasoning abstractly about unfamiliar situations). For example, code writing requires

recalling patterns stored as chunks in memory in order to apply these stored abstractions to new,

unfamiliar problems – e.g., code that must be produced from a problem description [45]. This

suggests that students with prior experience were reaching the stage of formal operational

reasoning by the end of the course, while those without experience progressed to the point where

they were demonstrating concrete operational reasoning. As such, the students in the intervention

– those with and without experience – were performing in the concrete-operational to formal-

139

operational range, compared to those in the baseline and those in typical CS1 classrooms, which

Lister noted fall in the preoperational to concrete-operational range [73].

There are important implications for this work for students with different prior experience

entering a CS1 course. Students with prior experience performed better in the intervention

semester and never worse, suggesting this type of instruction may be useful even with

experienced students. Beyond that, it is worth considering the timing of removal of scaffolding –

in this case, the end of dual-modality instruction – and how it will impact less experienced

students. In my study, in the exam just after dual-modality instruction stopped – Exam 2 –

students without experience performed worse in the intervention than in the baseline. It is

possible that the end of dual-modality instruction was premature for these students, and that they

make have benefited from a longer intervention. Though beyond the scope of this dissertation,

work exploring the timing of removal of this scaffolding could help future students and

instructors in CS1 courses.

6.3 Classroom Experience of Dual-Modality Instruction

In my third and final research question I asked, “What are student perceptions of dual-

modality programming environments and instructional approaches, and how do they change

over time, in the context of a CS1 course?” To investigate student perceptions of dual-modality

programming environments and instruction, and how they change over time, I qualitatively

coded student responses to survey questions about dual-modality instruction’s usefulness and

analyzed the results. I also examined trends in log files detailing student use of the plugin and

lecture slides. In this section I discuss both the student perceptions revealed by these data, along

with my personal experiences teaching the course using these materials. This section uses

randomly generated pseudonyms for each student in the study, which are composed of adjective-

animal pairs produced by the PetName module in Python [60].

140

6.3.1 Student Perceptions of Dual-Modality Instruction

During each course module, students completed a survey that included the binary

response question, “Does instruction in dual blocks-text modes help you learn better?”, along

with a free response “Why do you feel this way?” prompt. I first coded each free response in the

sample. Then, for each code, I counted the number of participants whose responses at a given

module time fit that code and divided by the total number of participants to arrive at a percentage

of participants whose responses fit that code.

From answers to these module survey questions, I found that more than half students

(54.6%, n=137) perceived the dual-modality instruction as helpful in learning to program at the

beginning of the course. Over time, the number of students that perceived dual-modality as

helpful decreased – slowly until Module 7, when instruction switched to text-only (47.2%,

n=183), and then decreased more rapidly. By the final survey in Module 11, 38.7% (n=136) felt

the dual-modality instruction was helpful (Figure 6-4, Table 6-8). When I analyzed the

qualitatively coded sample (Section 5.6.2) of student responses (25.0%, n=63) to the open-ended

prompt about their reasons for saying dual-modality instruction was helpful in modules 1, 3, 4, 7,

and 11, the most commonly cited reasons were Visualization (cited by 41.3%, n=26), Structure

(22.2%, n=14), Understanding (20.6%, n=13), and Introduction (19.0%, n=12) (Table 6-9).

While the reasons students cited (Table 6-10, Table 6-11, Appendix L) varied according to prior

programming experience, as I discuss later in this section, Visualization was consistently cited

by participants from all prior programming experience backgrounds as a reason they found

blocks-based instruction helpful.

141

Figure 6-4. Percentage of students indicating dual-modality instruction was helpful, by module.

Table 6-8. “Dual Mode Instruction is Helpful”, Range by Experience
Prior Experience First (M1) Highest Lowest Last (M11)
None 61.7% 61.7% (M1) 40.9% (M10) 43.8%
Blocks 56.9% 58.3% (M4) 36.2% (M9) 37.1%
Text-Only 44.0% 45.1% (M2) 31.0% (M9) 34.8%
All 54.6% 54.6% (M1) 36.6% (M10) 38.7%

142

Table 6-9. Common Codes and Examples
Code Definition Example
Introduction Introducing constructs to

beginners
“It should be used as a beginner
introduction.”

Structure Structuring code or
understanding structure

“It... makes your work more structured”

Understanding Understanding code / concepts
generally

“For block-programming... the logic is
easier to understand than text.”

Visualization Related to visualization of the
code, facilitating or inhibiting
learning (function)

“I(t) helps visualize the code.”

Table 6-10. Responses: Why Dual-Modality Instruction is Helpful (n=63) (>5% of Students)
Code No Exp (n=27) Blocks (n=19) Text (n=17) All (n=63)
Blocking 11.1%, n=3 21.1%, n=4 11.8%, n=2 14.3%, n=9
Colors 14.8%, n=4 10.5%, n=2 17.6%, n=3 14.3%, n=9
Formatting 3.7%, n=1 10.5%, n=2 5.9%, n=1 6.3%, n=4
Introduction 7.4%, n=2 31.6%, n=6 23.5%, n=4 19.0%, n=12
Learning (General) 7.4%, n=2 15.8%, n=3 5.9%, n=1 6.3%, n=4
Learning (Syntax) 11.1%, n=3 5.3%, n=1 0.0%, n=0 6.3%, n=4
Lectures 14.8%, n=4 10.5%, n=2 5.9%, n=1 11.1%, n=7
Organization 14.8%, n=4 5.3%, n=1 0.0%, n=0 7.9%, n=5
Reading 7.4%, n=2 10.5%, n=2 0.0%, n=0 6.3%, n=4
Scaffolding 18.5%, n=5 15.8%, n=3 17.6%, n=3 17.5%, n=11
Sequencing 7.4%, n=2 5.3%, n=1 5.9%, n=1 6.3%, n=4
Simplicity 11.1%, n=3 0.0%, n=0 5.9%, n=1 6.3%, n=4
Structure 22.2%, n=6 31.6%, n=6 11.8%, n=2 22.2%, n=14
Understanding 14.8%, n=4 36.8%, n=7 11.8%, n=2 20.6%, n=13
Visualization 40.7%, n=11 47.4%, n=9 35.3%, n=6 41.3%, n=26

Table 6-11. Responses: Why Dual-Modality Instruction is Not Helpful (n=63) (>3% of Students)
Code No Exp (n=27) Blocks (n=19) Text (n=17) All (n=63)
Accustomed 14.8%, n=4 15.8%, n=3 0.0%, n=0 11.1%, n=7
Confusing 7.4%, n=2 0.0%, n=0 11.8%, n=2 6.3%, n=4
Dependency 7.4%, n=2 15.8%, n=3 17.6%, n=3 6.3%, n=8
Distraction 0.0%, n=0 0.0%, n=0 11.8%, n=2 3.2%, n=2
Experienced 3.7%, n=1 5.3%, n=1 0.0%, n=0 3.2%, n=2
Learning Syntax 3.7%, n=1 5.3%, n=1 0.0%, n=0 3.2%, n=2
Lecture 0.0%, n=0 5.3%, n=1 5.9%, n=1 3.2%, n=2
No Longer Needed 14.8%, n=4 0.0%, n=0 0.0%, n=0 6.3%, n=4
Speed 3.7%, n=1 10.5%, n=2 0.0%, n=0 4.8%, n=3
Unnecessary 7.4%, n=2 0.0%, n=0 5.9%, n=1 4.8%, n=3
Visualization 3.7%, n=1 0.0%, n=0 5.9%, n=1 3.2%, n=2

143

6.3.1.1 Participants with only text experience

Among students whose only prior experience was in text, 30.0%-45.1% of students said

that dual-modality instruction was helpful to them throughout the semester, with the highest

percent saying it was helpful in the Module 2 survey (45.1%, n=32) and the lowest in Module 9

(30.0%, n=22) (Figure 6-4). Text-experience students felt the dual-modality instruction was

helpful in understanding concepts before writing text, with 35.3% (n=6) citing help in

Visualization on at least one survey. One student said, “it helps me to learn the simpler way

(blocks) before having to put concepts into practice (text)” (neutral-narwhal: Helpful, M3). Other

text-experience students (11.8%, n=2) said that the dual-modality instruction and tools make for

a handy Structure reference: “Just in case I forget something, I can see how its [sic] put together

in blocks” (keen-kid: Helpful, M4).

Several students with text experience empathized with new learners, pointing out that the

dual-modality instruction could help students as an Introduction to programming (23.5%, n=4).

For example, one participant reflected on the experiences of new programmers, stating, “Blocks

is good for new programmers” (fond-falcon: Helpful, M7), and another saying, “blocks is a nice

visualization of the code, which should help to see the scope of blocks and variables” (correct-

crane: Helpful, M1). Another pointed out that the dual-modality instruction was helpful in

lecture when introducing new concepts: “Dual block text in class is helpful for highlighting

general structured [sic] when they are introduced” (current-chipmunk: Helpful, M3).

When looking to the coded free response samples, 17.6% (n=3) of students who said

dual-modality instruction was not helpful pointed to issues of authenticity and dependency, with

students referring to the blocks scaffolding as a type of crutch: “I feel the usage of programming

with blocks creates a programmer who is reliant on pre-set syntax” (pseudonym big-buzzard:

Not Helpful, Module 3). Another 11.8% (n=2) said they found the blocks distracting, with one

144

student noting, “I feel like the different colors in block mode distracts me. I feel like I can

visual(lize) [sic] what I am programming better in text mode” (fond-firefly: Not Helpful, M1).

6.3.1.2 Participants with only blocks or with both blocks and text experience

More than half of students with prior blocks programming experience, on average,

indicated that dual-modality instruction helped them learn in their answers to the first four

module surveys (i.e., 56.9%, 51.4%, 51.4%, and 58.3%). In later modules, as students further

developed their skills, the percentage declined. On the 11th and final survey, 37.1% (n=44) said

they felt dual-modality instruction helped them (Figure 6-4). When asked why they indicated that

dual-modality instruction helped them learn, participants with blocks experience – similar to

those with only text experience – also ranked Visualization most often (47.4%, n=9), with one

participant stating, “It helps to visualize more the regions of the code with the uses of colors

shaped areas around the areas of the code” (ideal-ibex: Helpful, M1). Other commonly cited

reasons included Understanding (36.8%, n=7), such as the student who said, “The blocks help…

make the code easier to comprehend in the end” (modest-manatee: Helpful, M4). Some students

indicated the dual-modality instruction helped them with Structure (31.6%, n=6); for example,

one student mentioned, “it is easier to visualize the code and see which statement belongs where”

(becoming-basilisk: Helpful, M3). Students with blocks experience also mentioned usefulness as

an Introduction to programming (31.6%, n=6) and the effect of the Blocking mechanism (21.1%,

n=4), with one student saying, ”When learning a new programming language, the syntax and

structure of the language can be confusing. Block code is a little easier to read and share with

other beginners as well. Being able to switch back and forth between block and text, can help

with identifying where a function or loop begins and ends, and what is encapsulated within it.”

(equipped-emu, Helpful, M1).

145

In later surveys, some students indicated that they had progressed in their skills over time

and used the blocks constructs less often as a result; their early survey responses (e.g., M1)

described their use of blocks constructs, and their responses to later surveys (e.g., M4, M7)

indicated that they no longer needed or used blocks constructs. On the first survey, for example,

one participant said, “When learning a new programming language, the syntax and structure of

the language can be confusing. Block code is a little easier to read… being able to switch back

and forth between block and text, can help with identifying where a function or loop begins and

ends, and what is encapsulated within it” (equipped-emu: Helpful, M1). In the third survey, the

same participant noted “I primarily code in text mode, but sometimes it helps to jump into block

mode to see the color code looping” (equipped-emu: Helpful, M3). On the fourth survey, the

same participant noted that they no longer depended on blocks: “I didn't really use blocks this

time around. I am just more comfortable using text” (equipped-emu: Helpful, M4).

6.3.1.3 Participants with no prior programming experience

More than half of participants (50.5%-61.7%) with no prior programming experience

indicated they found dual-modality instruction helpful during every module that dual-modality

instruction was used, from the first survey through the seventh, in a range of 61.7% (n=58) to

50.5% (n=51) (Figure 6-4). As students progressed in the course and developed their skills, the

percentage of students indicating that dual-modality instruction was helpful gradually decreased

over successive modules; nevertheless, even at the end of the course (M11), nearly half (43.8%,

n=39) still found dual-modality instruction helpful. This finding suggests that the scaffolding

provided by dual-modality instruction continued to provide constructive support for student

learning at the end of the course. Similar to the responses provided by participants with prior

blocks experience, the responses from the participants with no prior experience most frequently

cited Visualization (40.7%, n=11), Structure (22.2%, n=6), Understanding (18.5%, n=5), and

146

Scaffolding (18.5%, n=5), and similarly their responses showed growth and change over time.

On the first survey, one participant said, “[it] allows for better visualization of Java language

with blocks, but also allows for necessary learning of Java language through text (strings,

variables, etc.)” (sure-shrimp: Helpful, M1); by the final survey, the same student responded

differently: “[it] better visualizes the way the code is set up and should run, but now I feel as

though I do not necessarily need it to understand the text code” (sure-shrimp: Helpful, M11).

6.3.1.4 Perceptions of dual-modality instruction discussion

The findings from this study suggest that the instruction provided affordances for

students to identify meaningful chunks of code which assists students with abstraction of code

functionality. Consistently, students from all experience backgrounds indicated that dual-

modality instruction was helpful throughout the course. At the end of the course, 34.8% of

students whose prior experience was exclusively in text said dual-modality instruction was

helpful, along with 37.1% of blocks-experience students and 43.8% of students with no prior

experience.

Irrespective of prior experience, students noted Visualization, Structure, and

Understanding as the top reasons for their answers when they indicated that dual-modality

instruction was helpful. Students with text-only experience cited visualizations on lecture slides

as helpful. They also empathized with new learners, identifying ways in which they felt those

new to programming might benefit from the dual-modality instruction. Similarly, students with

blocks experience noted that the dual-modality instruction was helpful as an introduction to

programming, and others said it helped them block out chunks of code. Students with no prior

experience also brought up the role the dual-modality instruction played in providing scaffolding

for chunking and abstraction. As such, the findings support my initial hypothesis that dual-

modality instruction provided a blocking-mechanism support that would help students chunk to

147

develop code abstractions. Thus, these affordances of dual-modality instruction directly support

chunking and abstraction skills characteristic of concrete and formal operational stages in the

Neo-Piagetian framework for novice programmers.

Among those with blocks experience and those with no prior experience, the findings

suggest students grew in their understanding of programming and relied on the scaffolding less

over time – growth we would expect to see as students develop their computing skills. 56.9%

(n=41) of those with prior blocks experience felt dual-modality instruction was helpful in the

beginning of the class. By Module 5, just under half (49.3%, n=34) still said the dual-modality

instruction helped them learn better. Students with no prior experience also showed progression

toward lower use of dual-modality representations. This progression occurred over a longer

range of time – i.e., they found the dual-modality representations helpful and made use of their

supporting scaffolding longer. Comments at the end of the course suggest some students no

longer made use of the dual-modality representations as frequently, noting that their dual-

modality instruction had helped them learn and that they had reached the point where they acted

independently of the scaffolding.

Despite their perceptions of dual-modality instruction – and blocks programming in

particular – as an unnecessary dependency, impediment, or otherwise unhelpful instructional

method, experienced students in the intervention scored more highly on course examinations

than those in the baseline. By comparison, students with little or no prior experience held

positive perceptions of the dual-modality instruction and tools – including the dual-modality

plugin. These differences further highlight the challenges of managing classrooms with students

of mixed experience levels. These findings may justify separate sections for different students

based on prior experience as has been discussed in the CS Education community and

148

implemented at some institutions [41]. In addition, the positive response to lecture materials

using blocks representations – even among those students with only text experience – suggests

that this approach could be useful even in later, more advanced programming courses when

presenting code.

6.3.2 Use of Dual-Modality Materials

As evidence of use of dual-modality instructional materials, I focused my analysis on

logs of students’ access to the lecture slides on the Canvas LMS and use of the dual-modality

Amphibian plugin. In both cases, I analyzed overall trends as well as trends broken up over the

instructional modules, usually one-week long, except around exams, when additional time was

set aside for reviews and the exams themselves. I numbered the modules 0 (introductory week

and tool installation) through 11 (the last module before the final examination).

6.3.2.1 Dual-modality materials results

On average across all weeks, 58.9% of the students accessed the lecture slides for the

modules while they were being covered in class (Median=58.3%; σ=27.3%) (Figure 6-5). The

highest percentage of accesses was in the weeks immediately before Exam 1, when 70.1% of

students accessed the slides (Module 4), and before and following Exam 2 (Module 5, 70.7%;

Module 6, 71.8%).

88.0% of the students in the class (n=374) installed and registered the plugin and used it

in at least one session, with a total of 148,931 logged events. Logs also indicated that an

additional 48 unique unregistered plugin IDs were in use, but I could not determine if any of

these were duplicate logins already accounted for. Logs of plugin events showed that most of the

plugin-registered participants used the plugin during each module (Figure 6-5). These logs

tracked events within the plugin itself – such as switching between blocks and text modes or

dragging and dropping blocks. The plugin logged three major types of events: Palette Viewing

149

(selecting a category of blocks), Mode Swapping (switching from blocks to text or vice-versa),

and Block Use (dragging / dropping blocks). When examining the plugin logs, I found that,

aggregated across all weeks and students, the majority of participant actions when using the

plugin were Palette Viewing (73.2%, n=108,674) followed by Mode Swapping (23.9%,

n=35,503), with Block Use being the smallest category (2.8%, n=4,279). Examining the usage

patterns by module dates, I found that the number of Palette Viewing (43.7%, n=2,450) and

Mode Swapping (45.9%, n=2,577) events during the first module were comparable, with fewer

Block Use events (10.4%, n=582). Over time, the percentage of Mode Swapping and Block Use

events decreased while percentage of Palette Viewing events increased. By the final week, most

events were Palette Viewing (81.9%, n=19,132) with a smaller number of Mode Swapping

events (17.9%, n=4,182), and very few Block Use events (0.1%, n=46) (Figure 6-6). One student

with only prior text experience said of the blocks mode, “it’s nice to have a simpler looking

format to reference back to if I get stuck” (sound-sloth, Helpful, M2).

There is also evidence in the surveys of students identifying how they used the dual-

modality materials in practice. For example, one student who used the plugin in 10 of the 11

modules said the dual-modality instruction was helpful because “it’s nice to have a simpler

looking format to reference back to if I get stuck” (sound-sloth: Helpful, M2). Another student,

who used the plugin during every module responded on a survey that “It allows me to see two

ways of coding the same program, and sometimes blocks are more structured” (sharp-stingray:

Helpful, M7).

150

Figure 6-5. Percentage of students accessing lecture slides and using plugin, by module.

Figure 6-6. Percentage of events of each type by module.

151

6.3.2.2 Dual-modality materials discussion

These results suggest that students were using the lecture materials and plugin throughout

the semester. The lecture slides being used each week, but most frequently before examinations.

This is what I had expected, as students typically use lecture slides during the lecture, but also

return and study from them before exams. I had expected the participants to use the plugin for a

variety of tasks, including using blocks mode to write code by selecting, dragging, and dropping

blocks. However, the most common event in the logs, Palette Viewing, involves students

switching between displays of blocks-based code snippets. Combined with the student free

responses noting the use of visualization as a reference for code structure, this suggests students

are referring to the palettes as a quick-lookup mechanism for sections of code.

After Palette Viewing, the second most common events were those associated with Mode

Swapping. Some students noted in surveys that swapping modes helped them visualize their code

and understand the structure of the code. While previous literature studying users of dual-

modality tools have noted that students swapped less often as they became accustomed to

programming [9], findings from my research extend the community’s knowledge to include the

types actions students engaged in and how those actions changed over time. For example,

students used blocks to program in the first module (10.4% of events) and did so rarely by the

last module (0.2%). They engaged in Palette Viewing more often as a percentage of events. This

change in behavior suggests that the scaffolding of blocks mode to write and construct programs

was not a highly utilized featured and that it was utilized less often over time. Instead, students

used the tool to remember how to use certain structures they had already learned in text. I further

consider and discuss these plugin events, and how they differ among students based on prior

experience, in the next section of this chapter.

152

6.3.3 Instructor Experience

Like many new course innovations, I found that the usage of dual-modality instruction

required a significant amount of additional preparation in advance of the course launch, such as

the development of tailored slides and assignment instructions, and some adjustments to

instructional method – for example, extra time needed to be set aside to instruct students on the

setup and use of the dual-modality plugin. However, overall, I was able to incorporate the

instructional approach into my typical course structure without a complete rewrite of the lesson

plans. A significant part of the preparation was modifying course materials (such as lecture

slides, lab manuals, and project descriptions) to include blocks representations of code in

addition to text representations. Additionally, course staff (such as graduate Teaching Assistants

and undergraduate Peer Mentors1) had to be trained in the use of the dual-modality tool use, as

well as how to address and navigate student problems in this space. Overall, the instructional

approach was effective, and students and instructional staff responded positively to the

integration of dual-modality tools and materials.

The Amphibian plugin played a key role in the study. Its addition on top of the existing

technology stack (including the Java runtime environment and IntelliJ IDEA) introduced a new

level of complexity, necessitating additional preparation for potential troubleshooting challenges.

In previous work with middle school students, I had employed a similar instructional approach,

but using a variant of the web-based Pencil Code environment. However, in that environment,

we were not able to write programs that could exist outside of the Pencil Code turtle graphics

sandbox. Based on this previous experience, I developed the Amphibian plugin, and in practice, I

1 In UF’s Herbert Wertheim College of Engineering, undergraduates serving as course assistants are referred to as
Peer Mentors to distinguish them from Graduate Teaching Assistants.

153

found that the flexibility it provided to students – compared to a sandbox like Pencil Code –

proved crucial to encouraging student exploration of programming in general.

The student experience and use cases were surprisingly different from what I had

originally anticipated in designing the study and instruction. In particular, I had expected

students to make heavy use of the blocks programming available in Amphibian, but in fact this

was rare. Instead, students used it for a variety of supporting functions – such as identifying

structure, helping them understand the connections between blocks, help with debugging, and as

a quick-reference for common constructs and library functions. This suggested to me that the

block structures were important, but rather than helping students to write new code, they were

more often used by students to make sure they understood the structure of their own code and to

ensure its correctness. Beyond offering a block programming environment, students found value

in the visualizations in slides and materials. Expanding on these visualizations, and adding more

object-oriented constructs, may further aid student conceptualization and learning of computer

science. In addition, despite the voluntary nature of the blocks programming – no student was

compelled to use the blocks mode in the class – some students with text experience indicated in

surveys that they felt strongly that the availability of blocks-mode programming was detrimental

to other less-experienced students, with many suggesting new learners should be forced to work

in text and/or that it was a disservice to new programmers. When utilizing dual-modality

instruction in the future, I plan to specifically address this perception by explaining the

motivation and function of the dual-modality instruction, as well as by outlining the findings of

this study – that those students who learned via dual-modality instruction outperformed those

who learned via text on course exams.

154

Based on my experience in the course, in the future I would make adjustments to how I

employ dual-modality instruction, and these may be instructive to other teachers considering use

of the approach. In particular, developing separate paths for students with prior experience and

those with no prior experience is important, as these learners reacted to – and learned from –

dual-modality instruction in different ways. While more than a third of students found the plugin

helpful across all experience levels, their perceptions varied according to prior experience. The

students with the most prior experience largely appreciated the dual-modality presentation

materials (slides, manuals, and descriptions), but some did not show the same enthusiasm for the

dual-modality plugin (and especially blocks programming support). On the other hand, students

with less experience more frequently said they felt that the plugin was helpful for them. This is

supported by our results, which generally show students performing better in the intervention

compared to the baseline. Future research could help make clear how much the dual-modality

plugin, vs class presentation materials, contributed to the performance of students with and with

no prior experience. Where practical, a separate instructional environment for inexperience and

experienced students [41] would allow the findings of such an investigation to be put into

practice. For example, if it were found that students with prior experience benefit exclusively

from the presentation materials, but not the dual-modality plugin, targeting the plugin toward

students without or with little experience would allow these students to benefit from the plugin

without introducing it to experienced students who may perceive it as a crutch. In this study, the

dual-modality representations in presented materials had support from students at many

experience levels. As such, it is worth exploring whether dual-modality instruction could be

utilized in later coursework (such as a CS2 or data structures course) as well.

155

6.4 Findings & Discussion Summary

In this study, I examined dual-modality instruction and learning in a CS1 course. Overall,

I did not find differences in participant scoring on the SCS1, but students performed better on

most course examinations in the intervention than the baseline semester. Notably, where topics

were not covered in dual-modality instruction, I did not find significant differences on exam

scores. The course examinations had more nuanced grading with partial credit and were tuned to

the topics of the course, unlike the SCS1, which may explain these findings.

I also examined interactions between instructional condition and students’ prior

experience. While I had expected those with no prior experience to show the greatest difference

between intervention and baseline groups, and those with text-only experience to show the least

difference, I found that the opposite was true. When I examined the interactions (where present)

between prior experience and condition, they were most pronounced among those with text

experience, where the intervention performed better, and the least pronounced differences were

among those with no prior experience. Interestingly, this was exclusive to the code writing

midterm sections and the Final Exam. Code writing uses recall (unlike code reading which relies

more on recognition), so students with more experience may have been building on and

strengthening pre-existing mental models. By the same token, there are indications that by the

end of the class, most students – but especially those with prior experience – had dispensed with

the dual-modality tools; as such, students with prior experience may have “graduated” beyond

the need for the tools. Further work in this area could examine whether dual-modality tools

representing advanced object-oriented concepts could be developed.

Finally, I looked at the perceptions of students and the instructor experience. Students

across all types of prior experience identified Code Visualization as a key factor in helping them

learn via dual-modality instruction, and those with prior blocks experience and no experience

156

also noted help with Code Structure and Code Understanding frequently. Even though students

with prior experience exclusively in text showed the greatest difference when comparing the

intervention and baseline groups, these students were least likely to say they found the dual-

modality instruction helpful – with only a minority indicating as much from the very beginning.

By contrast, those with prior blocks experience felt it was helpful for the first few weeks, while

those with no experience found dual-modality instruction helpful for as long as dual-modality

instruction was used in the classroom. This suggests that it would be valuable for further research

to investigate how far the benefits of dual-modality instruction might extend – perhaps into later

coursework – and identify additional ways to help students with experience learn while

supporting positive perceptions among them of the efficacy of the instruction.

157

CHAPTER 7
CONTRIBUTIONS

Here I enumerate the contributions to the field of computer science education that come

from my dissertation work – specifically, (1) foundational work: initial studies with elementary,

middle, and CS1 students on perceptions of programming, prior experience, and dual-modality

code representations; (2) a technical contribution: building the Pencil Code Python variant and

the Amphibian dual-modality IDE plugin for Java; (3) an empirical contribution: identification of

the connection between dual-modality instruction and learning in a CS1 course; and (4) an

instructional contribution: analysis of perceptions of students and instructor experience for the

dual-modality instructional approach.

7.1 Foundational Studies (Perceptions of Programming & Dual-Modality Representations)

My early work with K-12 students focused on how student perceptions and prior

experience mold their views of programming moving forward. In working with elementary

school students, I discovered that those students with prior experience held more nuanced views

of programming – focusing not just on artifacts that can be created, but the role of

communication and how it can be used to help others. I followed up on this work with middle

school students, with whom I investigated how experience in different representations related to

student perceptions of text programming. The students in this study who worked in the dual-

modality programming environment held positive perceptions of text more often and negative

perceptions of text programming less often than those students who moved directly from blocks

to text, demonstrating the potential of dual-modality programming environments to alleviate

negative feelings about text programming.

158

7.2 Technical: Python Pencil Code Variant & Amphibian Dual-Modality Java Plugin

Java and Python are common introductory languages in K-12 and college levels. Before I

began my work, dual-modality programming environments did not support Python of Java

languages, nor did they support IDE-based development or development of generic programs. By

integrating Python into the Pencil Code environment will support instructors who wish to

introduce the Python language using a dual-modality instructional approach in K-12 schools.

Further, the Java plugin I developed will enable instructors to more easily incorporate dual-

modality instruction into such CS1 courses and also enable more rigorous research into these

approaches by allowing researchers to reduce the impact of other variables (such as different

languages, software systems, and development environments). Historically, blocks-based

environments have been geared toward children and have largely been limited to sandboxed

environments; the Amphibian dual-modality plugin I built makes blocks-based programming

accessible broadly for any type of development. In addition, those dual-modality programming

environments that existed previously are currently limited to the imperative language paradigm,

even when working within languages that support object-oriented programming. The addition of

a fundamentally objected-oriented language to the Droplet Editor has necessitated design of

object-oriented blocks-based constructs which will enable other object-oriented languages to be

added more easily in the future. The plugin, along with its source code, is available on a public

source repository on GitHub: https://github.com/cacticouncil/amphibian.

7.3 Empirical: Learning and Dual-Modality Approaches to CS Instruction

Based on my analysis of the CS1 study’s results, this research identified:

1. relationship between dual-modality instruction and student learning;
differences correlated to prior programming experience by type; and
performance differences by instructional condition on assessments (e.g., writing vs reading).

https://github.com/cacticouncil/amphibian

159

My work showed that the students in the intervention group (dual-modality instruction)

outperformed those in the baseline group (text instruction) on course exams, but not on the

SCS1. By using the demographic survey to account for prior experience, I found that there were

differences in how students scored based on prior experience (none, blocks, or text-only) –

students with prior experience outperformed those with no prior experience on the code-writing

sections of the exams and the final exam. These results from the SCS1 and from the course

examinations contribute to the literature by helping researchers and educators understand how

dual-modality instruction connects to learning in computer science.

7.4 Instructional: Perceptions in Dual-Modality Programming Environment

Using data I collected in the CS1 study (as outlined in section 5.5), I analyzed student

perceptions and summarized my experience in employing dual-modality instruction in a

classroom environment. I also examined problems encountered, solutions employed, overall

results, and made recommendations. I found that, even at the end of the class, more than one-

third of the students still found dual-modality instruction helpful, and this was true for all prior

experience groups (no experience, blocks, and text-only), suggesting that students can benefit

from dual-modality instruction even at the end of a CS1 course. This analysis provides guidance

to computer science educators for using dual-modality programming environments in their

classrooms while providing researchers with a case study to consider in later research endeavors.

160

CHAPTER 8
CONCLUSIONS

This dissertation has answered open questions within the literature of computer

programming learning environments and particularly those using dual-modality representations.

In this section I summarize the problem, solution, my work, and my contributions to the field.

8.1 Problem

Students of programming in computer science must master several skills, among them

syntax, semantics, chunking, abstraction, computational thinking, and troubleshooting [125].

Blocks-based environments showed promise in helping students develop skills [89, 31].

However, the literature suggested students may struggle when moving to text-based

environments [134]. In addition, even once students have mastered syntax, they must still

develop general expertise in programming – and the ability to translate their ideas into running

code – while moving from the sensorimotor to preoperational to operational stages of reasoning

in the Neo-Piagetian framework [71].

8.2 Proposed Solution

Dual-modality block-text systems, offering both text and blocks-based representations,

were developed to provide a bridge for students between learning environments and production

languages [7]. Specifically, these environments offered promise in being able to allay the

difficulties students face when working in text-based representations by adopting some of the

scaffolding and affordances of blocks-based representations [14]. In addition, by linking textual

and blocks-based modes of the same language, dual-modality blocks-text systems may facilitate

chunking and abstraction by visually nesting code blocks (such as those of function or

conditional constructs) [71]. My work evaluated the use of dual-modality instruction to facilitate

161

learning in early programming coursework and differences in performance and student

perceptions that arose due to prior programming experience [16].

8.3 Early Work

My early work included (1) an examination of perceptions in blocks-based and text-based

programming with children, and development of a custom dual-modality programming

environment variant, and (2) creation of a dual-modality curriculum and a custom dual-modality

representation programming assessment for middle school students, and an analytical

comparison of perceptions of blocks, text, and dual-modality representations from a study with

middle school students. I summarize this work in this section.

8.3.1 Perceptions of Programming Investigations

I conducted a study of programming and specific construct perceptions with children in a

summer game in 2015. I posited that, while blocks-based tools can help facilitate the learning of

computer science concepts at younger ages, students encounter challenges translating their

experiences into production languages; I suggested development of a bridge between blocks and

text. This initial study’s purpose was to identify how prior programming experience connected to

overall perception of the act of programming and specific language constructs. This study’s

results, which showed that the children with and without prior programming experience had

distinct patterns in their perceptions of programming, provided guidance for later work which

focused on qualitative coding and analysis of perceptions of blocks-vs-text paired with

quantitative score analysis.

8.3.2 Initial Evaluation of Perceptions & Learning

I conducted a study at a middle school in Central Florida to collect data on the use of

dual-modality instruction and learning and perceptions of programming. The purpose of this

study was to identify how use of bi-directional dual-modality programming environments

162

connects to student learning and perceptions of programming and computer science. The focus of

the initial analysis was perceptions of programming specifically and learning generally.

To facilitate this work, I integrated a Python runtime environment into Pencil Code and

worked with a team of undergraduate students to create a Python API for Pencil Code. This work

allowed instruction using Pencil Code in the Python language. To measure learning, I developed

a custom dual-modality assessment with representations in blocks and text. I created an

assessment in dual text-blocks representations with three isomorphic variants of each question so

that the same concept could be tested at three points in time to measure change in performance

over time. I found that students who started in blocks and then worked in hybrid environments

before moving into text held more positive views of text programming compared to students who

moved directly from blocks to text programming. This prompted me to further investigate how

dual-modality programming environments and tools could be used in college level coursework

and how it might change the classroom, affect perceptions, and connect to learning.

8.4 Final Study

The final work for my dissertation study is summarized here. This includes development

of the Amphibian dual-modality Java language IDE plugin for IntelliJ IDEA, development of

dual-modality classroom materials, analysis of responses on the custom and SCS1 assessments,

and data collection during the dual-modality instructional intervention.

8.4.1 Amphibian Dual-Modality Java Language IDE Plugin for IntelliJ IDEA

I developed a dual-modality plugin for the IntelliJ IDE in order to lay the groundwork for

my proposed work. At the time of the plugin’s development, there were no dual-modality tools

for standalone IDE-based development, or development of general-purpose programs. A group

of students and I developed a dual-modality IDE plugin from Pencil Code’s Droplet Editor to

enable switching between blocks and text within a production environment. To facilitate

163

practical study of CS1 student performance in a “real-world” environment, I developed a Java

variant of the dual-modality IDE plugin, which I dubbed “Amphibian”. This tool will enable

teachers of Java courses – including those of AP CS and many introductory college courses – to

incorporate a blocks/text transition into the curriculum. The plugin was used in my study of dual-

modality instruction and learning in a CS1 classroom.

8.4.2 Dual-Modality Instruction & Curriculum

I developed new materials for the CS1 (COP3502) course materials utilizing dual-

modality representations in order to facilitate student use of and learning via the dual-modality

programming environment in the study. These materials, along with student responses to surveys

and instructor notes, were used to analyze student perceptions and the instructor experience

during the intervention. This analysis can be used by future instructors of early programming

courses to identify potential strategies for introduction of dual-modality programming

environments into classroom instruction.

8.4.3 Instrument Evaluation

In Fall of 2017 I collected SCS1 assessment results from participants in the CS1 course at

the University of Florida (COP3502) at the end of the term. Students were offered extra credit to

participate in a concept inventory test just before the final examination. Both the custom

assessment described earlier and the SCS1 were used during this collection phase. I used data

collected during this phase to determine that the SCS1 was an appropriate instrument and to

decide on the structure of the intervention in my final dissertation study.

8.4.4 Study of Dual-Modality Instruction and CS Learning

I conducted a study at the college level in a multi-section COP3502 (UF’s CS1) course in

Spring of 2018 and Fall of 2018 to examine the dual-modality instruction and learning in a CS1

course. The participants from Spring 2018 learned via a traditional, text-based instructional

164

approach (the baseline group), while the participants from Fall of 2018 learned via dual-modality

instruction (the intervention group). The intervention group used the Amphibian dual-modality

IDE plugin and materials. Participants also answered survey questions throughout the term about

their perceptions of dual-modality representation IDE plugin and materials. Both groups

(baseline and intervention) completed the SCS1 at the end of the semester for extra credit.

8.4.5 Analysis of Learning and Dual-Modality Instruction

I analyzed the data from the intervention and baseline groups to identify differences in

programming knowledge, particularly as it related to stages of cognitive development. As

primary measures, I used student scores on the SCS1 and course examinations (two midterms

and one final). Surveys, logs, and notes from the intervention group were used to contextualize

results and provide supporting evidence for findings. Course examination sections (code reading

and code writing) were analyzed separately. I also examined the role prior programming

experience played in student scores. I anticipated that students in the intervention group would

score more highly on tracing and code-completion questions on the SCS1, and on code reading

and code writing questions on the course examinations, while students in both groups would

score about the same on definitional questions. While I did not see differences in the SCS1

questions, even by type, there were significant differences in the course examinations, with

students in the intervention scoring higher than those in the baseline. Digging deeper, I found

that significant results were more pronounced – and had a bigger effect size – on examinations

for which all topics were covered in dual-modality instruction, compared to those that were

covered partly in text or only in text. I also anticipated that the largest differences between the

baseline and intervention groups would be among students with no experience, followed by

experience in blocks – and that students with prior text experience would differ the least.

However, my results showed the opposite: students with text-only prior experience performed

165

better on all three course exams in the intervention group compared to the baseline group, and

with a greater positive difference than the difference among those with blocks or no prior

experience.

8.4.6 Examination of Student Perceptions and Instructor Experience

I also analyzed student perceptions of dual-modality instruction and reported on my

experience as an instructor employing dual-modality instruction based on surveys, usage logs,

and instructor notes. The analysis includes student perceptions of dual-modality instruction and

how it changed over time. I had anticipated that students would find the dual-modality

instruction more helpful at the beginning of the course, but that over time they would find it less

useful, and that is indeed what I found when examining student survey responses. I also found

that more than half of students whose prior experience was exclusively text felt the dual-

modality instruction was not helpful throughout the course – especially blocks-based

programming – which ran counter to the course examination results. By comparison, among

those who had previous experience in blocks, or no experience, more than half said dual-

modality instruction was helpful at the beginning of the course, but fewer found it helpful by the

end of the course, with some students explicitly mentioning that had outgrown the support

provided by the dual-modality instruction. Finally, I detailed my experience in the classroom,

identifying challenges, successes, and suggestions for other instructors who are considering the

employment of dual-modality instruction in early programming coursework. This analysis will

also help researchers to explore when and how transitioning from dual-modality instruction to

pure-text instruction is appropriate in the classroom setting.

166

8.5 Contributions

My contributions include three main elements:

a. a technical contribution –dual-modality IDE plugin for the Java language;
b. an instructional contribution – analysis of perceptions and experience, and materials; and
c. an empirical contribution – analysis of dual-modality instruction and learning.

The plugin and perception analysis provide tools and guidance to educators and

researchers in the classroom, while the empirical work provides insight into how and where dual-

modality programming environments can have the most positive connection to learning.

8.6 Future Work

My work suggests several avenues for future consideration and exploration in research. I

have examined dual-mode instruction as a whole, but I found that students with different

experience levels reacted differently to dual-modality presentation materials (e.g., lecture slides

and lab manuals) than to the dual-modality plugin that allowed programming in different modes.

The benefits of dual-modality presentation materials may extend beyond early programming

courses, and identifying whether such approaches help students in later courses (such as CS2 and

Data Structures courses) would help instructors tailor CS course materials. In addition, the

different reactions from students with and without prior experience suggest that employing the

dual-modality plugin in earlier curricula – such as a “CS0” or AP CS Principles course – may

help students learn even before reaching CS1 courses by helping them to link blocks and text

representations. I also noted that my dual-modality instruction ended at basic object-oriented

structures, and notably did not include such concepts as inheritance, interfaces, and abstract

classes; integration of representations of such concepts into dual-modality tools – such as

incorporating the visual inheritance modeling in BlueJ and GreenFoot [49, 51] – would allow for

further investigation of the effectiveness of dual-modality instruction and tools in helping

167

students learn more complex computer science concepts. Finally, the benefit to even experienced

programmers from the dual-modality representations in presentation materials suggests that there

may be value even to experts in such a blocking mechanism. The students in the course used the

blocks-mode of the plugin to check their understanding of code structure and ensure its

correctness; this could be explored within professional IDEs – for example, by graphically

delineating boundaries of constructs within text modes.

The data collected in these studies also provides fertile ground for future work. Though

outside of the scope of this dissertation, artifacts collected during the study with middle school

students could be analyzed to identify how and when students used different types of constructs,

and in-depth item analysis of student performance on the custom assessment could provide

insight into how that custom assessment, and potentially other concept inventory assessments,

could be improved. The plugin logs from my final CS1 study could be further analyzed to

identify sessions in blocks and text modes, which could then be examined over time to see if the

usage patterns my expectations that students would use the blocks mode less as they gained

experience in programming. Chat logs collected from instructor discussions could also yield

further insight into the classroom environment and perspectives not just of the main instructor

(myself) but also those of graduate Teaching Assistants and undergraduate Peer Mentors.

Additionally, explicitly analyzing student perceptions of helpfulness and plugin usage patterns

for interactions could provide further evidence of and directly link the plugin’s connection to

student perceptions and learning.

There are important limitations of my work that could be a source for exploration in

future work as well. In the final CS1 study, it is possible that a selection bias played a role in

student differences, as the data were collected in different semesters, and did not use a random-

168

control model. As I collected demographic responses from participants including educational

history, I or others can use propensity score analysis [69] to address this limitation and provide

supporting evidence for a causal relationship between the dual-modality instruction and

improved performance and learning. I could also investigate whether there are meaningful trends

in performance, tool usage, or perceptions along ethno-racial, age, or educational backgrounds.

Investigation of these data could further help us craft instruction and curricula that best serve a

diverse population in our community.

8.7 Summary

My doctoral work was inspired by my personal experiences in teaching and focused on

early programming instruction, especially blocks-based environments. I began by examining

how student perceptions are shaped by prior experience and programming constructs, and I

suggested in my early work that a bridge between blocks and text could facilitate novice

programmers moving into production languages. Later, my work focused on the connection of

dual-modality programming environments to perceptions and learning, especially Pencil Code.

In order to study these dual-modality programming environments, I participated in and led the

development of several instructional tools, including a Python variant of Pencil Code and a

custom dual-modality representation CS assessment. As evidence of the potential role of dual-

modality programming environments became more evident in the literature and my experience,

my work shifted to focus on dual-modality instruction in CS1 classrooms.

To investigate the role dual-modality programming environments could play in early

programming courses, I developed a plugin architecture and Java language IDE plugin, as well

as dual-modality instructional materials for use in a CS1 classroom. These tools allowed me to

conduct a study of dual-modality instruction in a CS1 classroom. I have analyzed that data and

reported in this dissertation on how dual-modality instruction connects with student learning, and

169

how it varies according to prior programming experience. I have also analyzed student

perceptions and analyzed them within the context of the classroom experience in order to provide

a template for future instructors who wish to employ dual-modality instruction in college

classrooms. My work contributes an understanding, grounded in pedagogical theory, of how

dual-modality representations connect with learning and provides tools and guidance to

educators and researchers in the classroom environment.

170

APPENDIX A
CONFERENCES, PUBLICATIONS, & DEVELOPMENT

Published / Completed

Blanchard, J., Gardner-McCune, C., and Anthony, L. 2020. Dual-Modality Instruction and
Learning: A Case Study in CS1. Accepted to the 51st ACM Technical Symposium on Computer
Science Education (2020), 818-824. (Research Track, Best Paper, 2nd Place)

Blanchard, J., Gardner-McCune, C., and Anthony, L. 2019. Effects of Code Representation on
Student Perceptions and Attitudes Toward Programming. Proceedings of the IEEE Symposium
on Visual Languages & Human-Centric Computing (2019), 127–131. (Best Paper, Runner Up)

Blanchard, J., Gardner-McCune, C., and Anthony, L. 2019. Amphibian: Dual-Modality
Representation in Integrated Development Environments. 2019 IEEE Blocks and Beyond
Workshop (Blocks and Beyond), 83-85.

Blanchard, J., Gardner-McCune, C. and Anthony, L. 2018. How Perceptions of Programming
Differ in Children with and without Prior Experience. Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (2018), 1099.

Blanchard, J. 2017. Hybrid Environments: A Bridge from Blocks to Text. Proceedings of the
2017 ACM Conference on International Computing Education Research. (2017), 295–296.

Blanchard, J., Gardner-McCune, C., and Anthony, L. 2015. Bridging Educational Programming
and Production Languages. “Every Child a Coder” workshop, Position paper, ACM SIGCHI
Conference on Interaction Design and Children (2015).

Pencil Code, Python Variant (2017). https://github.com/cacticouncil/pencilcode.

Droplet Variant with Java Support (2018). https://github.com/cacticouncil/droplet.

Droplet IntelliJ Plugin with Java support (2018). https://github.com/cacticouncil/amphibian.

In Progress

Bridging Educational Environments to Production Languages: A Survey

Effects of Dual-Modality Instruction on the Classroom Experience

https://github.com/cacticouncil/pencilcode
https://github.com/cacticouncil/droplet
https://github.com/cacticouncil/amphibian

171

APPENDIX B
TIMELINE FOR DOCTORAL WORK

Table B-1. Doctoral Work Timeline (Chronological)
Period Task / Activity
Spring 2015 Paper: “Every Child a Coder” workshop – position paper (accepted) [57]
Summer 2015 Data Collection: Construct Perceptions in Children
Fa. ‘15–Sp. ‘16 Data Analysis & Writing: Construct Perceptions in Children
Summer 2016 Development: Pencil Code’s Python Variant
Fall 2016 Development: Pencil Code’s Python Variant

Qualifying Examination
Spring 2017 Development: Pencil Code’s Python Variant

Development: Custom Blocks/Text Assessment
Study Design: Middle School Study
Paper Submission: ICER Doctoral Consortium (accepted) [13]

Summer 2017 Data Collection: Middle School Study
Data Analysis: Middle School Study

Fall 2017 Data Analysis: Middle School Study
Paper: SIGCSE – Middle School Study (reworked for VL/HCC)
Poster: SIGCSE – Construct Perceptions in Children (accepted) [15]
Development: Dual-Modality IDE Plugin Framework
Data Collection: SCS1 & Custom Assessment in CS1 (instrument eval.)
Study Design: CS1 & Dual-Modality Programming Environments

Spring 2018 Item Analysis: Custom Assessment and SCS1
Study Design: CS1 & Dual-Modality Programming Environments
Data Collection: SCS1 in CS1 course (baseline)
Development: Java Dual-Modality IDE Plugin

Summer 2018 Study Design: CS1 & Dual-Modality Programming Environments
Development: Dual-Modality Representation Materials
Development: Java Dual-Modality IDE Plugin

Fall 2018 Study Intervention: Dual-Modality IDE Plugin & Course Materials
Data Collection: SCS1 in CS1 course (intervention)
Data Collection: Surveys, Plugin Logs, Course Grades

Spring 2019 Dissertation Proposal Writing
Summer 2019 Proposal Defense

Paper: VL/HCC – Middle School Study (accepted, 2nd Best Paper) [14]
Data Analysis: CS1 & Dual-Modality Programming Environments

Fall 2019

Paper: SIGCSE – CS1 Amphibian Study (accepted, 2nd Best Paper) [16]
Paper: Blocks & Beyond Workshop – Amphibian Plugin (accepted) [17]

Fa. 19–Su.’20 Complete and Defend Dissertation

172

APPENDIX C
MIDDLE SCHOOL STUDY: DEMOGRAPHIC QUESTIONNAIRE

1. We want to learn if some tools help students learn to program better than others. If you
decide to participate, you will be asked to fill out questionnaires on three days over the
next five weeks while working with different programming tools. These questions will
not be used to grade you, and there are no known risks to participation. You do not have
to be in this study if you don’t want to and you can quit the study at any time. Other than
the researchers, no one will know your answers, including your teachers or your
classmates. If you don’t like a question, you don’t have to answer it and, if you ask, your
answers will not be used in the study. I also want you to know that whatever you decide,
this will not affect your grades in class.

Would you be willing to participate in this study? [Yes] [No]

(If a participant answers “No” to this question, they will be redirected to a “thank you”
page with no further questions.)

2. What is your gender identity? [Male] [Female] [Prefer to Self-Describe:_]
[Decline to answer]

3. What is your age? [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] ______
[Decline to answer]

4. Please specify your ethnicity (check all that apply): [American Indian or Alaska Native]
[Asian] [Black or African American] [Hispanic or Latino]
[Native Hawaiian or other Pacific Islander] [White] [Other:______] [Decline to answer]

5. Which environments/tools have you used before? Check all that apply. [Scratch] [Alice]
[Pencil Code] [Hour of Code] [Others:]

6. Which languages have you used before? Check all that apply. [Logo] [Python]
[JavaScript] [HTML] [Others:] [Blank]

173

APPENDIX D
MIDDLE SCHOOL STUDY: PERCEPTION QUESTIONNAIRES

Questions used a Likert scale [Strongly Agree] [Agree] [Neither] [Disagree] [Strongly Disagree]

Personal Perceptions (Pre, Mid, & Post)

1. Computers are fun.
Computer jobs are boring.
Programming is hard.
I want to find out more about programming.
I can become good at programming.
I prefer to solve my own computer problems.
I like the challenge of computer problems.
My family, friends, and/or classmates ask me for help with computer problems.

Mid-Survey Only, By Condition

Text Condition

1. I think programming in text is easy.
2. I think programming in text is frustrating or hard.
3. I think learning to program in blocks is more useful than text.
4. I think learning to program in text is more useful than blocks.
5. I would have preferred to program using blocks as opposed to text.

Blocks Condition

1. I think programming in blocks is easy.
I think programming in blocks is frustrating or hard.
I think learning to program in blocks is more useful than text.
I think learning to program in text is more useful than blocks.
I would have preferred to program using text as opposed to blocks.

Hybrid Condition

1. I think programming in blocks is easier than programming in text.
2. I think programming in text is easier than programming in blocks.
3. I think programming in blocks is frustrating or hard.
4. I think programming in text is frustrating or hard.
5. I think learning to program in blocks is more useful than text.
6. I think learning to program in text is more useful than blocks.
7. I would prefer to program using text as opposed to blocks.
8. I would prefer to program using blocks as opposed to text.

174

Post-Survey Only, All Conditions

1. I think programming in blocks is easier than programming in text.
2. I think programming in text is easier than programming in blocks.
3. I think programming in blocks is frustrating or hard.
4. I think programming in text is frustrating or hard.
5. I think learning to program in blocks is more useful than text.
6. I think learning to program in text is more useful than blocks.
7. I would prefer to program using text as opposed to blocks.
8. I would prefer to program using blocks as opposed to text.

175

APPENDIX E
CS1 STUDY: DEMOGRAPHIC QUESTIONNAIRE

1. We want to identify the strengths and weaknesses of computer science assessments. If you
decide to participate, you will be asked to fill out a demographic questionnaire. These
questions will not be used to grade you. You will also be asked to take an assessment on
computer science concepts, for which you will receive extra credit. The assessment will take
60-120 minutes. You will receive 25 points of extra credit to be applied to your exam grades
(out of 1000 points in the course.) You may also elect to do an alternative assignment, a
course reflection essay, to earn the extra credit. Your assessment results will be connected to
your class performance for research purposes only. No one other than the researchers and
your teachers will know your answers or grades. There are no known risks to participation.
You do not have to be in this study if you don’t want to and you can quit the study at any
time. If you don’t like a question, you don’t have to answer it and, if you ask, your answers
will not be used in the study.

Would you be willing to participate in this study? [Yes] [No]

(If a participant answers “No” to this question, they will be redirected to a “thank you” page
with no further questions.)

2. What is your name? (This will be used to connect your participation to the course)
[Name]

3. What is your UFL.EDU email address? [Email]

4. May we contact you in the future about possible participation in follow up studies? [Yes]
[No]

5. What is your gender identity? [Male] [Female] [Prefer to Self-Describe: ________]
[Decline to answer]

6. What is your age? [________] [Decline to answer]

7. Please specify your ethnicity (check all that apply): [American Indian or Alaska Native]
[Asian] [Black or African American] [Hispanic or Latino]
[Native Hawaiian or other Pacific Islander] [White] [Other(s): ________]
[Decline to answer]

8. How many years of programming do you have...
In College: [Number selector]
In K-12 Schools: [Number selector]
Self-taught / practice: [Number selector]

9. Have you taken any of the following courses in high school, and if so, what was your
score on the AP exam?

[Choices: Did not take course; Took course but not exam; 1; 2; 3; 4; 5]

176

[] AP Computer Science
[] AP Computer Science Principles
[] AP Calculus AB
[] AP Calculus BC
[] AP Physics

10. Have you taken any of the following courses (other than this one) at the college level?
[] Calculus I
[] Calculus 2
[] Computer Science 0 / Computational thinking course
[] Computer Science 1 / Programming class in computer science
[] Physics 1

11. Which programming environments/tools have you used before? Check all that apply.
[] Alice
[] Code.org
[] Scratch
[] Pencil Code
[] Python
[] Java
[] C#
[] C++
[] C
[] Logo
[] Other(s): [________]

177

APPENDIX F
CS1 STUDY: PERCEPTION QUESTIONNAIRES

Questions used a Likert scale [Strongly Agree] [Agree] [Neither] [Disagree] [Strongly Disagree]

Personal Perceptions (Pre-Survey Only)

1. Computers are fun.
2. Computer jobs are boring.
3. Programming is hard.
4. I want to find out more about programming.
5. I can become good at programming.
6. I prefer to solve my own computer problems.
7. I like the challenge of computer problems.
8. My family, friends, and/or classmates ask me for help with computer problems.

Blocks/Text Perceptions (Pre, Mid, Post)

1. I think programming in blocks is easier than programming in text.
2. I think programming in text is easier than programming in blocks.
3. I think programming in blocks is frustrating or hard.
4. I think programming in text is frustrating or hard.
5. I think learning to program in blocks is more useful than text.
6. I think learning to program in text is more useful than blocks.
7. I would prefer to program using text as opposed to blocks.
8. I would prefer to program using blocks as opposed to text.

Hybrid Instruction Perceptions (Mid, Post)

1. What benefits do you think hybrid blocks-text instruction provides, and why? [Free
response]

2. What concepts or constructs do you think hybrid blocks-text instruction helps students
learn or understand, and why? [Free response]

3. How frequently in a week do you refer to the lecture slides to study, prepare, and/or do
assignments? [Never] [Rarely] [Sometimes] [Frequently] [Always]

178

Weekly Survey

1. Did you program in “Blocks” mode since the end of your previous lab (including this
lab)? [Yes/No]

2. Did you program in “Text” mode since the end of your previous lab (including this lab)?
[Yes/No]

3. What was your primary mode since the end of your previous lab (including this lab)?
[Blocks/Text]

4. Does instruction in dual blocks-text modes help you learn better? [Yes/No]

5. Why do you feel this way? [Free response]

179

APPENDIX G
CUSTOM ASSESSMENT

Q1

180

Q2

181

182

Q3

183

Q4

184

185

Q5

186

Q6

187

188

Q7

189

190

Q8

191

192

Q9

193

194

Q10

195

196

Q11

197

198

Q12

199

200

Q13

201

202

Q14

203

204

Q15

205

206

Q16

207

208

APPENDIX H
ITEM ANALYSIS: CUSTOM ASSESSMENT IN CS1 COURSE

209

APPENDIX I
ITEM ANALYSIS: SCS1 IN CS1 COURSE

210

APPENDIX J
CONDITION AND EXPERIENCE INTERACTIONS

Table J-1. Mean & Standard Deviation: Condition x Experience
 No Experience Blocks Experience Text-Only
Exams Basl. μ, σ Intv. μ, σ Basl. μ, σ Intv. μ, σ Basl. μ, σ Intv. μ, σ
SCS1 All 48.3, 16.5 44.5, 16.7 55.0, 21.1 52.0, 16.3 54.4, 20.0 58.3, 18.5
SCS1 Definitional 55.4, 17.6 51.5, 20.4 60.1, 23.8 60.3, 18.4 61.7, 19.4 62.6, 18.3
SCS1 Tracing 48.0, 20.2 42.8, 19.2 52.3, 21.5 52.0, 20.4 56.8, 21.9 57.4, 22.1
SCS1 Completion 40.2, 23.4 36.5, 20.8 51.0, 27.0 43.1, 22.2 44.4, 27.4 51.1, 25.3
Ex. 1 Def. / Read. 56.7, 15.8 81.3, 14.8 63.7, 20.7 88.5, 10.1 60.0, 15.4 88.4, 12.1
Ex. 1 Writing 60.7, 22.8 60.8, 25.9 79.7, 29.6 84.6, 17.5 70.6, 23.6 89.2, 15.0
Ex. 2 Def. / Read. 70.5, 19.5 74.9, 20.1 76.2, 19.8 78.3, 14.4 72.2, 19.8 80.7, 15.8
Ex. 2 Writing 67.6, 27.2 58.1, 25.9 74.4, 24.5 74.9, 22.6 69.5, 30.5 78.5, 18.8
Final Exam 66.4, 17.4 69.1, 16.6 58.8, 17.4 74.8, 13.9 66.5, 16.7 79.2, 13.2

211

APPENDIX K
PLUGIN EVENT COUNTS AND CATEGORY MAPPING

Table K-1. Table of Event Counts and Percentages by Module (Chronological)
M Date Range View Palette Get Block Put Block Go to Blocks Go to Text
0 08/22–08/28 2450 (43.7%) 323 (5.8%) 259 (4.6%) 1308 (23.3%) 1269 (22.6%)
1 08/29–09/04 3543 (48.7%) 377 (5.2%) 402 (5.5%) 1488 (20.5%) 1460 (20.1%)
2 09/05–09/11 5206 (52.0%) 514 (5.1%) 584 (5.8%) 1882 (18.8%) 1826 (18.2%)
3 09/12–09/18 8159 (61.1%) 461 (3.5%) 475 (3.6%) 2159 (16.2%) 2100 (15.7%)
4 09/19–10/02 7577 (69.2%) 154 (1.4%) 124 (1.1%) 1566 (14.3%) 1527 (13.9%)
5 10/03–10/09 7048 (74.0%) 109 (1.1%) 85 (0.9%) 1146 (12.0%) 1132 (11.9%)
6 10/10–10/16 8511 (76.2%) 65 (0.6%) 116 (1.0%) 1228 (11.0%) 1251 (11.2%)
7 10/17–10/23 4798 (76.3%) 32 (0.5%) 23 (0.4%) 717 (11.4%) 715 (11.4%)
8 10/24–11/06 12066 (81.1%) 40 (0.3%) 28 (0.2%) 1380 (9.3%) 1359 (9.1%)
9 11/07–11/13 10849 (83.3%) 9 (0.1%) 7 (0.1%) 1055 (8.1%) 1099 (8.4%)
10 11/14–11/27 19029 (84.7%) 6 (0.0%) 5 (0.0%) 1704 (7.6%) 1726 (7.7%)
11 11/28–12/11 19132 (81.9%) 23 (0.1%) 12 (0.1%) 2046 (8.8%) 2136 (9.1%)

Table K-2. Mapping if Event Name to Event Category
Event Category
View Palette Palette Viewing
Grab Block Block Use
Place Block Block Use
Go to Blocks Mode Swapping
Go to Text Mode Swapping

212

APPENDIX L
CS1 STUDY CODEBOOK AND RESULTS TABLE BY MODULE NUMBER

Table L-1. Codebook: Why Dual-Modality Instruction is Helpful / Not Helpful
Code Definition Example
Accustomed Student is used to blocks/text “I am used to programming in blocks.”
Aesthetic Related to the look (form);

visual appeal; includes style
“I like the look of text better than blocks”

Boilerplate Used (blocks) to provide
boilerplate / setup code /
syntax

“I use blocks to initially set the project up,
but the text is what I use for the majority of
my work.”

Blocking Separation / identification of
specific constructs / grouping
of code into blocks

“The colors make the grouping of code
easier to follow for a beginner.”

Colors Related to /mention of colors
(usually of blocks)

“I like seeing the commands color coded in
instruction.”

Confusing Contributes to confusion /
misunderstanding

“Blocks make things slightly more
confusing.”

Connection Establish / follow connections
between constructs

“Blocks... shows how... blocks fit together
and how the logic flows”

Correctness Related to correctness / validity
of code

“Because doing it in both blocks and text
mode is very useful in showing how
organized and valid my code is.”

Debugging Finding mistakes in code “Blocks make it very hard for one to
decipher issues within the text”

Dependency Dependency on blocks inhibits
learning of programming as
done in the “real world”

“Ultimately I believe this will hurt you the
more you rely it, and then it's harder to
switch to pure text while learning harder
material.”

Distraction More/fewer distractions in
environment

“I find blocks mode to be rather distracting
to the eye, it sometimes takes my focus off
the content”

Enjoyability Expression enjoyment “I like coding as I type”
Experienced Student indicated they had

prior programming experience
“I wrote most of my codes in text because I
think people who have experience with
java should use that.”

Formatting Related to formatting of code “It allows me to see the proper way to
format my code if I am confused.”

Freedom Noted freedom of using either /
both modes as a strength

“Greater freedom with my coding”

Functionality Related to understanding /
conceptualization of
functionality

“I believe that it helps students understand
the function of each block better than
coding in text.”

Importance Mention of general importance “Because I feel this more important.”
Introduction Introducing constructs to

beginners
“It should be used as a beginner
introduction.”

213

Learning
(General)

Facilitates / inhibits learning in
general

“I learn better in text because I program in
text”

Learning
(Syntax)

Facilitates / inhibits learning of
new language syntax

“I think the block coding will make it
easier in the beginning of the class to write
code when I still am learning Java syntax.”

Lectures Help or hinder student(s)
understand the lecture material

“Especially when I am sitting far back in
the lecture hall.”

Links Blocks
& Text

Connecting concepts / ideas
between blocks and text

“It allows you to see the structure of the
code in blocks while gaining the
understanding of every part from the text.”

Organization Related to organization of code
/ concepts

“Helps me organize my thoughts better.”

No Longer
Needed

Student no longer needed
blocks (suggesting they
previously found them useful)

“I have just stopped using block altogether
because I have improved in my coding
ability.”

Perspective Seeing things from multiple
perspectives / points of view

“It just helps me see the same material
twice”

Preference Student noted a preference “I like text more”
Puzzle-Like Resembles puzzle-piece

systems
“Blocks feels like a visual puzzle”

Reading Reading / readability code “I think by programming in blocks you
make your code easier to read”

Scaffolding Provides cognitive support;
helping students get "unstuck",
reminders, framework,
enumeration, etc.

“I mainly used text, but switched if I
couldn’t remember the syntax for a
command or function.”

Scope Related to program scoping for
elements

“Blocks is a nice visualization of the code,
which should help to see the scope of
blocks and variables.”

Sequencing Facilitates conceptualization of
sequencing / logic / execution

“Because it is easier to visualize the
sequences”

Simplicity Simpler “I think blocks simplify the code”
Speed Impacts how fast user can

program
“It… allows you to move faster”

Structure Structuring code or
understanding structure

“It... makes your work more structured”

Transitioning Relating to the transition
between text and blocks modes

“Learning in blocks then transitioning to
text is the most helpful for me.”

Understanding Understanding code / concepts
generally

“For block-programming... the logic is
easier to understand than text.”

Unnecessary Not needed for some reason “The blocks seem unnecessary at times,
especially if you know what to type”

Visualization Related to visualization of the
code, facilitating or inhibiting
learning (function)

“I(t) helps visualize the code.”

214

Table L-2. Table of Code Counts of Responses Indicating Instruction was Helpful, by Module
Code M1 M3 M4 M7 M11 No Exp Blocks Text All
Accustomed 1 0 0 0 0 0 1 0 1
Aesthetic 1 1 1 1 1 0 0 1 1
Boilerplate 0 0 2 1 0 1 2 9 3
Blocking 2 3 3 2 4 3 4 2 9
Colors 3 3 2 4 2 4 2 3 9
Connection 0 2 2 1 0 2 1 0 3
Correctness 1 0 0 0 0 1 0 0 1
Debugging 0 1 1 0 0 0 1 0 1
Enjoyability 1 0 0 0 0 1 0 0 1
Formatting 2 2 0 0 0 1 2 1 4
Freedom 0 1 0 0 1 1 0 0 1
Functionality 1 0 0 0 0 0 1 0 1
Importance 0 0 1 0 0 1 0 0 1
Introduction 7 5 3 4 3 2 6 4 12
Learning (General) 2 3 1 0 2 2 3 1 6
Learning (Syntax) 3 0 0 1 0 3 1 0 4
Lectures 0 5 2 1 1 4 2 1 7
Links Blocks / Text 1 0 0 0 0 0 1 0 1
Organization 2 3 2 0 1 4 1 0 5
Perspective 1 0 1 2 4 3 2 0 5
Preference 0 0 1 0 0 0 0 1 1
Reading 3 0 1 1 1 2 2 0 4
Scaffolding 4 4 1 3 1 5 3 3 11
Scope 1 0 0 0 0 0 0 1 1
Sequencing 2 0 1 0 1 2 1 1 4
Simplicity 1 2 0 1 0 3 0 1 4
Speed 0 2 0 1 0 1 1 0 2
Structure 5 4 5 6 3 6 6 2 14
Transitioning 0 0 1 0 0 0 0 1 1
Understanding 4 2 4 5 5 4 7 2 13
Visualization 13 9 7 11 10 11 9 6 26

215

Table L-3. Table of Code Counts of Responses Indicating Instruction Not Helpful, by Module
Code M1 M3 M4 M7 M11 No Exp Blocks Text All
Accustomed 2 4 1 3 4 4 3 0 7
Aesthetic 0 0 0 0 1 1 0 0 1
Colors 1 0 0 0 0 0 0 1 1
Confusing 1 2 0 1 2 2 0 2 4
Connection 1 0 0 0 0 0 0 1 1
Dependency 2 2 4 2 6 2 3 3 8
Details 0 0 0 1 0 0 0 1 1
Distraction 2 1 0 0 0 0 0 2 2
Experienced 0 0 1 0 2 1 1 0 2
Frustrating 0 1 0 0 0 0 1 0 1
Learning (Syntax) 0 1 1 0 1 1 1 0 2
Lectures 0 1 0 1 0 0 1 1 2
No Longer Needed 0 1 2 1 1 4 0 0 4
Practice 0 0 0 1 0 0 1 0 1
Puzzle-Like 1 0 0 1 0 1 0 0 1
Reading 0 0 0 0 1 0 0 1 1
Speed 0 2 1 1 0 1 2 0 3
Unnecessary 0 0 0 1 2 2 0 1 3
Visualization 0 0 1 1 0 1 0 1 2

216

APPENDIX M
DISCUSSION WITH CURRICULUM COMMITTEE CHAIR

The following is the correspondence seeking and receiving approval to use the hybrid
instructional approach in the COP3502 course. The following message was sent to the
department’s Curriculum Committee Chair, Arunava Banerjee:

From: Jeremiah Blanchard <jblanch@cise.ufl.edu>
Sent: Tuesday, April 3, 2018 9:23 PM
To: Banerjee, Arunava <arunava@ufl.edu>
Subject: Curriculum committee

Hi Dr. Banerjee,

I am working on some updates to the Programming I course, and in hand with that I am looking
into conducting a study about some of these changes and some tools I would like to bring into
the course.

Since I have a research interest in the results, it was suggested that I might see if there are a few
minutes that I could come into the curriculum committee meeting briefly to describe the changes.
In a nutshell - a lot of our youngest students come in with prior experience. Some of those are in
text, but some are in blocks languages. I'm working on a tool that is intended to help students
move into text more easily, and I would present multiple modes of the same source to students to
build a connection between what they've learned previously and the content. (This won't involve
any change in language or topics covered.)

Regards,
Jeremiah Blanchard

The following was the chair’s response:

From: Banerjee, Arunava <arunava@ufl.edu>
Sent: Tuesday, April 4, 2018 10:15 PM
To: Blanchard, Jeremiah J <jblanch@cise.ufl.edu>
Subject: Re: Curriculum committee

That is wonderful Jeremiah. We do not have regularly scheduled curriculum meetings (in fact,
we do not have any physical meetings). When I need something passed by the committee, I
simply run it via email.

So long as you are not changing the curriculum, I would say that you should feel free to
experiment. In fact, I would encourage you to do things that you believe in your heart will help
the students learn better. Not all experiments turn out for the good, but so long has you genuinely
intend it for improvement, I am happy to stand behind you.

-Arunava
__

217

Arunava Banerjee
Associate Professor
Computer & Information Science & Engineering
University of Florida
www.cise.ufl.edu/~arunava

218

LIST OF REFERENCES

[1] Agarwal, A. and Agarwal, K.K. 2003. Some deficiencies of C++ in teaching CS1 and
CS2. ACM SIGPlan Notices. 38, 6 June (2003), 9–13.

[2] Ahmadzadeh, M., Elliman, D. and Higgins, C. 2005. An analysis of patterns of debugging
among novice Computer Science students. Proceedings of the 10th annual SIGCSE
conference on Innovation and Technology in Computer Science Education (ITiCSE ’05)
(2005), 84–88.

[3] Al-bow, M., Austin, D., Edgington, J., Fajardo, R., Fishburn, J., Lara, C., Meyer, S.,
History, A., Science, C. and Studies, D.M. 2008. Using Greenfoot and Games to Teach
Rising 9th and 10th Grade Novice Programmers. Proceedings of the 2008 ACM
SIGGRAPH symposium on Video games (2008), 55–59.

[4] Auerbach, Carl and Silverstein, L.B. 2003. Qualitative data: An introduction to coding and
analysis. Qualitative data: An introduction to coding and analysis. NYU press. 31–87.

[5] Baker, F.B. 2001. The Basics of Item Response Theory.

[6] Barnett, S.M. and Ceci, S.J. 2002. When and where do we apply what we learn?: a
taxonomy for far transfer. Psychological Bulletin. 128, 4 (2002), 612–637.

[7] Bau, D. 2015. Droplet, a blocks-based editor for text code. Journal of Computing Sciences
in Colleges. 30, 6 (2015), 138–144.

[8] Bau, D.A. and Bau, D.A. 2014. A Preview of Pencil Code. Proceedings of the 2nd
Workshop on Programming for Mobile & Touch - PROMOTO ’14 (2014), 21–24.

[9] Bau, D., Bau, D.A., Pickens, C.S. and Dawson, M. 2015. Pencil Code: Block Code for a
Text World. Proceedings of the 14th International Conference on Interaction Design and
Children (2015), 445–448.

[10] Bau, D., Gray, J., Kelleher, C., Sheldon, J. and Turbak, F. 2017. Learnable Programming:
Blocks and Beyond. Communications of the ACM. 60, 6 (2017), 72–80.

[11] Begel, A. 1996. LogoBlocks: A graphical programming language for interacting with the
world. Ph. D. Dissertation. Massachusetts Institute of Technology, Cambridge, MA.

[12] Begel, A. and Klopfer, E. 2007. StarLogo TNG: An Introduction to Game Development.
Journal of E-Learning. 53, (2007), 146.

[13] Blanchard, J. 2017. Hybrid Environments: A Bridge from Blocks to Text. Proceedings of
the 2017 ACM Conference on International Computing Education Research (2017), 295–
296.

219

[14] Blanchard, J., Gardner-McCune, C. and Anthony, L. 2019. Effects of Code Representation
on Student Perceptions and Attitudes Toward Programming. 2019 IEEE Symposium on
Visual Languages and Human-Centric Computing (2019), 127–131.

[15] Blanchard, J., Gardner-McCune, C. and Anthony, L. 2018. How Perceptions of
Programming Differ in Children with and without Prior Experience. Proceedings of the
49th ACM Technical Symposium on Computer Science Education (2018), 1099.

[16] Blanchard, J., Gardner-McCune, C. and Anthony, L. 2020. Dual-Modality Instruction and
Learning: A Case Study in CS1. Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (2020), 818–824.

[17] Blanchard, J., Gardner-McCune, C. and Anthony, L. 2019. Amphibian: Dual-Modality
Representation in Integrated Development Environments. Proceedings of the 2019 IEEE
Blocks and Beyond Workshop (Blocks and Beyond) (2019), 83–85.

[18] Bontá, P., Papert, A. and Silverman, B. 2010. Turtle , Art , TurtleArt Programming in
TurtleArt. Proc. of Constructionism 2010 Conference. (2010), 1–9.

[19] Borstler, J., Johansson, T. and Nordstroin, M. 2002. Teaching OO concepts-a case study
using CRC-cards and BlueJ. Frontiers in Education. 32, 1 (2002), T2G-1.

[20] Brainerd, C.J. 1978. Piaget’s Theory of Intelligence. Prentice Hall.

[21] Brennan, K. and Resnick, M. 2012. New frameworks for studying and assessing the
development of computational thinking. Proceedings of the 2012 annual meeting of the
American Educational Research Association (2012), 1–25.

[22] Brockwell, P.J. and Davis, R.A. 2002. Introduction to Time Series and Forecasting (2nd.
ed.). Springer, New York, NY.

[23] Brown, P.H. 2008. Some field experience with Alice. Journal of Computing Sciences in
Colleges. 24, 2 (2008), 213–219.

[24] Buckley, M., Kershner, H., Schindler, K., Alphonce, C. and Braswell, J. 2004. Benefits of
using socially-relevant projects in computer science and engineering education. ACM
SIGCSE Bulletin. 36, 1 (2004), 482–486.

[25] Carlson, J.E., Davier, M. von and von Davier, M. 2013. Item response theory (ETS R&D
Scientific and Policy Contribution Series ETS SPC-13-05). Princeton, NJ: Educational
Testing Service. (2013).

[26] Conway, M., Audia, S., Burnette, T., Cosgrove, D. and Christiansen, K. 2000. Alice:
lessons learned from building a 3D system for novices. Proceedings of the SIGCHI
conference on Human factors in computing systems - CHI’00 (2000), 486–493.

[27] Conway, M.J. 1997. Alice: easy-to-learn 3D scripting for novices. Ph. D. Dissertation.
University of Virginia, Charlottesville, VA.

220

[28] Cooper, S., Dann, W., and Pausch, R. 2000. Developing Algorithmic Thinking With
Alice. The proceedings of ISECON (2000).

[29] Cooper, S. 2010. The Design of Alice. ACM Transactions on Computing Education. 10, 4
(2010), 15.

[30] Cooper, S., Dann, W. and Pausch, R. 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges. 15, 5 (2000), 107–
116.

[31] Cooper, S., Dann, W. and Pausch, R. 2003. Teaching Objects-first In Introductory
Computer Science. ACM SIGCSE Bulletin. 35, 1 (2003), 191–195.

[32] Corney, M., Teague, D., Ahadi, A. and Lister, R. 2012. Some Empirical Results for Neo-
Piagetian Reasoning in Novice Programmers and the Relationship to Code Explanation
Questions. 14th Australasian Computing Education Conference. 123, February (2012),
77–86.

[33] Cypher, A. and Smith, D.C. 1995. KidSim: End User Programming of Simulation.
Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’95.
(1995), 27–34.

[34] Dann, W., Cooper, S. and Pausch, R. 2000. Making the connection: programming with
animated small world. ACM SIGCSE Bulletin. 32, 3 (2000), 41–44.

[35] Dann, W., Cosgrove, D., Slater, D. and Culyba, D. 2012. Mediated transfer: Alice 3 to
Java. Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education (2012), 141–146.

[36] Dillane, J. 2020. Frame-Based Novice Programming. Proceedings of the 25th annual
SIGCSE conference on Innovation and Technology in Computer Science Education
(ITiCSE ’20) (2020), 583–584.

[37] DiSalvo, B., Guzdial, M., Bruckman, A. and McKlin, T. 2014. Saving face while geeking
out: Video game testing as a justification for learning computer science. Journal of the
Learning Sciences. 23, 3 (2014), 272–315.

[38] Enbody, R.J., Punch, W.F. and McCullen, M. 2009. Python CS1 as preparation for C++
CS2. ACM SIGCSE Bulletin. 41, 1 (2009), 116–120.

[39] Ericson, B. and McKlin, T. 2012. Effective and Sustainable Computing Summer Camps.
Proceedings of the 43rd ACM Technical Symposium on Computer Science Education
(2012), 289–294.

[40] Fraser, N. 2015. Ten Things We’ve Learned from Blockly. IEEE Blocks and Beyond
Workshop. (2015), 49–50.

221

[41] Garcia, D.D., Harvey, B. and Segars, L. 2012. CS principles pilot at University of
California, Berkeley. ACM Inroads. 3, 2 (2012), 66–68.

[42] Garlick, R. and Cankaya, E. 2010. Using Alice in CS1: A quantitative experiment.
Proceedings of the fifteenth annual conference on Innovation and technology in computer
science education. (2010), 165–168.

[43] Gindling, J., Ioannidou, A., Loh, J., Lokkebo, O. and Repenning, A. 1995. LEGOsheets: a
rule-based programming, simulation and manipulation environment for the LEGO
Programmable Brick. Proceedings of Symposium on Visual Languages. (1995), 172–179.

[44] Girden, E.R. 1992. ANOVA: Repeated measures. Sage, New York, NY.

[45] Gobet, F., Lane, P.C.R., Croker, S., Cheng, P.C.-H., Jones, G., Oliver, I. and Pine, J.M.
2001. Chunking mechanisms in human learning. TRENDS in Cognitive Sciences. 5, 6
(2001), 236–243.

[46] Grover, S., Pea, R. and Cooper, S. 2014. Remedying misperceptions of computer science
among middle school students. Proceedings of the 45th ACM technical symposium on
Computer science education (2014), 343–348.

[47] Gwet, K.L. 2008. Computing inter-rater reliability and its variance in the presence of high
agreement. British Journal of Mathematical and Statistical Psychology. 61, 1 (2008), 29–
48.

[48] Van Haaster, K. and Hagan, D. 2004. Teaching and learning with BlueJ: an Evaluation of
a pedagogical tool. Information Science + Information Technology Education Joint
Conference. (2004), 455–470.

[49] Hagan, D., Michael Kolling and Selby Markham 1999. The BlueJ Experience :
Implementing Educational Innovation.

[50] Hagan, D. and Selby Markham 2000. Teaching Java with the BlueJ Environment.
Proceedings of Australasian Society for Computers in Learning in Tertiary Education
Conference (2000).

[51] Henriksen, P. and Kolling, M. 2004. Greenfoot: Combining Object Visualization with
Interaction. Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications - OOPSLA ’04. (2004), 73–82.

[52] Hestenes, D., Wells, M. and Swackhamer, G. 1992. Force concept inventory. The Physics
Teacher. 30, 3 (1992), 141–158.

[53] Homer, M. and Noble, J. 2017. Lessons in combining block-based and textual
programming. Journal of Visual Languages and Sentient Systems. 3, 1 (2017), 22–39.

[54] Hsu, K.C. 1996. Developing Programming Environments for Programmable Bricks. Ph.D.
Dissertation. Massachusetts Institute of Technology, Cambridge, MA.

222

[55] Huitt, W., & Hummel, J. 2003. Piaget’s theory of cognitive development.
http://www.edpsycinteractive.org/topics/cognition/piaget.html. Accessed: 2020-07-24.

[56] Ingalls, D., Wallace, S., Chow, Y.Y.-Y., Ludolph, F. and Doyle, K. 1988. Fabrik: a visual
programming environment. Acm Sigplan. (1988), 176–190.

[57] Jeremiah Blanchard, Christina Gardner-McCune and Lisa Anthony 2015. Bridging
Educational Programming and Production Languages. “Every Child a Coder” workshop,
ACM SIGCHI Conference on Interaction Design and Children (2015).

[58] Kelleher, C. and Pausch, R. 2005. Lowering the Barriers to Programming : a survey of
programming environments and languages for novice programmers. ACM Computing
Surveys. 37, 2 (2005), 83–137.

[59] Kelleher, C., Pausch, R. and Kiesler, S. 2007. Storytelling alice motivates middle school
girls to learn computer programming. Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’07 (2007), 1455–1464.

[60] Python PetName: https://github.com/dustinkirkland/python-petname. Accessed: 2020-07-
24.

[61] Ko, A.J., Myers, B., Aung, H.H. and others 2004. Six learning barriers in end-user
programming systems. Visual Languages and Human Centric Computing, 2004 IEEE
Symposium on (2004), 199–206.

[62] Kölling, M. 1999. Teaching Object Orientation with the Blue Environment. Journal of
Object-Oriented Programming. 12, 2 (1999), 14–23.

[63] Kölling, M. 2008. Using BlueJ to Introduce Programming. Reflections on the Teaching of
Programming. Springer-Verlag. 98–115.

[64] Kölling, M. 2010. The Greenfoot Programming Environment. ACM Transactions on
Computing Education. 10, 4 (2010).

[65] Kölling, M., Brown, N. and Altadmri, A. 2017. Frame-Based Editing. Journal of Visual
Languages and Sentient Systems. 3, 1 (2017), 40–67.

[66] Kölling, M., Brown, N.C.C. and Altadmri, A. 2015. Frame-Based editing: Easing the
transition from blocks to text-Based programming. Proceedings of the 10th Workshop in
Primary and Secondary Computing Education (2015), 29–38.

[67] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J. 2003. The BlueJ system and its
pedagogy. Computer Science Education. 13, 4 (2003), 249–268.

[68] Kramer, J. 2007. Is abstraction the key to computing? Communications of the ACM. 50, 4
(2007), 36–42.

[69] Leite, W. 2016. Practical Propensity Score Methods Using R. Sage, New York, NY.

223

[70] Libarkin, J.C. and Anderson, S.W. 2005. Assessment of Learning in Entry-Level
Geoscience Courses: Results from the Geoscience Concept Inventory. Journal of
Geoscience Education. 53, 4 (2005), 394–401.

[71] Lister, R. 2011. Concrete and Other Neo-Piagetian Forms of Reasoning in the Novice
Programmer. Proceedings of the Thirteenth Australasian Computing Education
Conference (2011), 9–18.

[72] Lister, R. 2011. COMPUTING EDUCATION RESEARCH: Programming, syntax and
cognitive load. ACM Inroads 2,2 (August 2011).

[73] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,
R., Moström, J.E., Sanders, K., Seppälä, O., Simon, B. and Thomas, L. 2004. A multi-
national study of reading and tracing skills in novice programmers. ACM SIGCSE
Bulletin. 36, 4 (2004), 119–150.

[74] Malan, D.J. and Leitner, H.H. 2007. Scratch for budding computer scientists. ACM
SIGCSE Bulletin. 39, 1 (2007), 223–227.

[75] Maloney, J., Resnick, M. and Rusk, N. 2010. The Scratch programming language and
environment. ACM Transactions on Computing Education. 10, 4 (2010), 1–15.

[76] Maloney, J., Resnick, M., Rusk, N., Peppler, K. and Kafai, Y.B. 2008. Media Designs
with Scratch What Urban Youth Can Learn about Programming in a Computer
Clubhouse. Proceedings of the 8th international conference on International conference
for the learning sciences (2008), 81–82.

[77] Maloney, J., Rusk, N., Burd, L., Silverman, B., Kafai, Y. and Resnick, M. 2004. Scratch:
A sneak preview. Proceedings - Second International Conference on Creating,
Connecting and Collaborating Through Computing. (2004), 104–109.

[78] Mannila, L., de Raadt, M. and Linda Mannila, M. de R. 2006. An objective comparison of
languages for teaching introductory programming. Baltic Sea ’06 Proceedings of the 6th
Baltic Sea conference on Computing education research: Koli Calling 2006 (2006), 32–
37.

[79] Marascuilo, L.A. and Levin, J.R. 1970. Appropriate Post Hoc Comparisons for Interaction
and Nested Hypotheses in Analysis of Variance Designs: The Elimination of Type IV
Errors. American Educational Research Journal. 7, 3 (1970), 397–421.

[80] Margolis, J. and Fisher, A. 2002. Unlocking the clubhouse: women in computing. MIT
Press, Cambridge, MA.

[81] Matsuzawa, Y. 2015. Language Migration in non-CS Introductory Programming through
Mutual Language Translation Environment Basic Function and Interface. Proceedings of
the 46th ACM Technical Symposium on Computer Science Education. (2015), 185–190.

224

[82] Matsuzawa, Y., Ohata, T., Sugiura, M. and Sakai, S. 2015. Language Migration in non-CS
Introductory Programming through Mutual Language Translation Environment Basic
Function and Interface. Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (2015), 185–190.

[83] Matwin, S. and Pietrzykowski, T. 1985. Prograph: a preliminary report. Computer
Languages. 10, 2 (1985), 91–126.

[84] McCracken, M. et al. 2001. A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. ACM SIGCSE Bulletin. 33, 4 (2001), 125.

[85] Mciver, L. 2000. The Effect of Programming Language on Error Rates of Novice
Programmers. 12th Workshop of the Psychology of Programming Interest Group (2000),
181–192.

[86] McIver, L.M. and Conway, D. 1999. GRAIL: A Zeroth Programming Language.
Advanced Research in Computers and Communications in Education New Human
Abilities for the Networked Society. 43–50.

[87] Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. St. and Thomas, L. 2006. A
cognitive approach to identifying measurable milestones for programming skill
acquisition. ACM SIGCSE Bulletin. 38, 4 (2006), 182–194.

[88] Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M. 2011. Habits of programming in
scratch. ITiCSE. (2011), 168–172.

[89] Meerbaum-Salant, O. 2010. Learning computer science concepts with scratch. ICER ’10:
Proceedings of the Sixth international workshop on Computing education research.
(2010), 69–76.

[90] Miller, G.A. 1956. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review. 63, 2 (1956), 81–97.

[91] Monig, J., Ohshima, Y. and Maloney, J. 2015. Blocks at your fingertips: Blurring the line
between blocks and text in GP. Proceedings - 2015 IEEE Blocks and Beyond Workshop,
Blocks and Beyond 2015 (2015), 51–53.

[92] Monroy-Hernández, A. and Resnick, M. 2008. Empowering kids to create and share
programmable media. Interactions. 15, (2008), 50.

[93] Nachar, N. 2008. The Mann-Whitney U: A Test for Assessing Whether Two Independent
Samples Come from the Same Distribution. Tutorials in Quantitative Methods for
Psychology. 4, 1 (2008), 13–20.

[94] Nikiforos, S., Kontomaris, C. and Chorianopoulos, K. 2013. MIT Scratch : A Powerful
Tool for Improving Teaching of Programming. Conferrence on Informatics in Education
(2013), 11–12.

225

[95] Paas, F., Tuovinen, J., Tabbers, H. and Van Gerven, P.W.M. 2003. Cognitive Load
Measurement as a Means to Advance Cognitive Load Theory. Educational Psychologist.
38, 1 (2003), 1–4.

[96] Papert, S. 1980. Mindstorms: children, computers, and powerful ideas. Basic Books, Inc,
New York, NY.

[97] Papert, S. and Harel, I. 1991. Situating Constructionism. Constructionism. 1–11.

[98] Parker, M.C. and Guzdial, M. 2016. Replication, Validation, and Use of a Language
Independent CS1 Knowledge Assessment. Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education (2016), 93–101.

[99] Parker, M.C. and Guzdial, M. 2016. Replication, Validation, and Use of a Language
Independent CS1 Knowledge Assessment. Proceedings of the 2016 ACM Conference on
International Computing Education Research (2016), 93–101.

[100] Parr, T.J. and Quong, R.W. 1995. ANTLR: A predicated‐LL(k) parser generator.
Software: Practice and Experience. 25, 7 (1995), 789–810.

[101] Partchev, I. 2004. A visual guide to item response theory. http://www.metheval.uni-
jena.de/irt/VisualIRT.pdf. Accessed: 2020-07-24.

[102] Partovi, H. and Sahami, M. 2013. The hour of code is coming! ACM SIGCSE Bulletin. 45,
4 (2013), 5–5.

[103] Pattis, R., Roberts, J. and Stehlik, M. 1994. Karel the robot: a gentle introduction to the
art of programming. Wiley, Hoboken, NJ.

[104] Pausch, R., T. Burnette, A. C. Capehart, M. Conway, D. Cosgrove, R. DeLine, J. Durbin,
R. Gossweiler, S. Koga, and J.W. 1995. A brief architectural overview of Alice, a rapid
prototyping system for virtual reality. IEEE Computer Graphics and Applications.

[105] Portelance, D.J., Strawhacker, A.L. and Bers, M.U. 2016. Constructing the ScratchJr
programming language in the early childhood classroom. International Journal of
Technology and Design Education. 26, (2016), 489–504.

[106] Price, T.W., Brown, N.C.C., Lipovac, D., Barnes, T. and Kölling, M. 2016. Evaluation of
a Frame-based Programming Editor. Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education. (2016), 33–42.

[107] Repenning, A. 1993. Agentsheets: A Tool for Building Domain-Oriented Visual
Programming Environments. CHI ’93: Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems. (1993), 142–143.

[108] Repenning, A. and Citrin, W. 1993. Agentsheets: Applying Grid-Based Spatial Reasoning
to Human-Computer Interaction. Proceedings 1993 IEEE Symposium on Visual
Languages (1993), 77–82.

226

[109] Repenning, A. and Sumner, T. 1995. Agentsheets: A Medium for Creating Domain-
Oriented Visual Languages. Computer. 28, 3 (1995), 17–25.

[110] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J. a Y., Silverman, B. and Kafai, Y. 2009. Scratch:
Programming for All. Communications of the ACM. 52, (2009), 60–67.

[111] Richards, B. 2003. Experiences incorporating Java into the introductory sequence. Journal
of Computing Sciences in Colleges. 19, 2 (2003), 247–253.

[112] Smith, D.C., Cypher, A. and Spohrer, J. 1994. KidSim: programming agents without a
programming language. Communications of the ACM. 37, 7 (1994), 54–67.

[113] Soloway, E., Adelson, B. and Ehrlich, K. 1988. Knowledge and processes in the
comprehension of computer programs. The nature of expertise. 129–152.

[114] Spencer, D. 2009. Card sorting: Designing usable categories. Rosenfeld Media, New
York, NY.

[115] Sudol, L.A. and Studer, C. 2010. Analyzing test items: Using Item Response Theory to
Validate Assessments. Proceedings of the 41st ACM Technical Symposium on Computer
Science Education - SIGCSE ’10. (2010), 436–440.

[116] Sudol, L.A. and Studer, C. 2010. Analyzing test items: Using Item Response Theory to
Validate Assessments. Proceedings of the 41st ACM Technical Symposium (2010), 436–
440.

[117] Suskie, L. 2009. Assessing Student Learning: A Common Sense Guide (2nd ed). Jossey-
Bass, San Francisco, CA.

[118] Sweller, J. 1988. Cognitive Load During Problem Solving : Effects on Learning.
Cognitive Science. 12, 2 (1988), 257–285.

[119] Tabet, N., Gedawy, H., Alshikhabobakr, H. and Razak, S. 2016. From Alice to Python .
Introducing Text-based Programming in Middle Schools . Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education (2016), 124–
129.

[120] Teague, D., Comey, M., Ahadi, A. and Lister, R. 2013. A qualitative think aloud study of
the early Neo-Piagetian stages of reasoning in novice programmers. Conferences in
Research and Practice in Information Technology Series (2013), 87–95.

[121] Teague, D. and Lister, R. 2014. Programming: reading, writing and reversing.
Proceedings of the 2014 conference on Innovation & technology in computer science
education - ITiCSE ’14. (2014), 285–290.

227

[122] Tew, A.E. and Guzdial, M. 2011. The FCS1 : A Language Independent Assessment of
CS1 Knowledge. SIGCSE ’11 Proceedings of the 42nd ACM technical symposium on
Computer science education (2011), 111–116.

[123] Tew, A.E. and Guzdial, M. 2010. Developing a validated assessment of fundamental CS1
concepts. Proceedings of the 41st ACM technical symposium on Computer science
education (2010), 97–101.

[124] Tharp, A.L. 1982. Selecting the “right” programming language. Proceedings of the
thirteenth SIGCSE technical symposium on Computer science education (1982), 151–155.

[125] The Joint Task Force on Computing Curricula - ACM/IEEE-Computer Society 2013.
Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science.

[126] Thorndyke, E.L. and Woodworth, R.S. 1901. The influence of improvement in one mental
function upon the efficiency of other functions. (I). Psychological Review. 8, 3 (1901),
247–261.

[127] Utting, I., Tew, A.E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., Paterson, J.,
Caspersen, M., Kolikant, Y.B.-D., Sorva, J. and Wilusz, T. 2013. A Fresh Look at Novice
Programmers’ Performance and Their Teachers’ Expectations. Proceedings of the
{ITiCSE} Working Group Reports Conference on Innovation and Technology in Computer
Science Education-working Group Reports. (2013), 15–32.

[128] Viera, A.J. and Garrett, J.M. 2005. Understanding Interobserver Agreement: The Kappa
Statistic. Family Medicine. May (2005), 360–363.

[129] Vilner, T., Zur, E. and Tavor, S. 2011. Integrating greenfoot into CS1 - A Case Study.
Proceedings of the 16th annual joint conference on Innovation and technology in
computer science education. (2011), 350.

[130] Wagner, A., Gray, J., Corley, J. and Wolber, D. 2013. Using app inventor in a K-12
summer camp. SIGCSE ’13 Proceeding of the 44th ACM technical symposium on
Computer science education (2013), 621–626.

[131] Wang, T.-C., Mei, W.-H., Lin, S.-L., Chiu, S.-K. and Lin, J.M.-C. 2009. Teaching
programming concepts to high school students with Alice. 2009 39th IEEE Frontiers in
Education Conference. (Oct. 2009), 1–6.

[132] Ward, B., Marghitu, D., Bell, T. and Lambert, L. 2010. Teaching computer science
concepts in Scratch and Alice. Journal of Computing Sciences in Colleges. 26, (2010),
173–180.

[133] Ward, B., Marghitu, D., Bell, T. and Lambert, L. 2010. Teaching computer science
concepts in Scratch and Alice. Journal of computing Sciences in Colleges. 26, 2 (2010),
173–180.

228

[134] Weintrop, D. 2016. Modality Matters: Understanding the Effects of Programming
Language Representation in High School Computer Science Classrooms. Ph.D.
Dissertation. Northwestern University, Evanston, IL.

[135] Weintrop, D. and Holbert, N. 2017. From Blocks to Text and Back: Programming Patterns
in a Dual-modality Environment. Proceedings of the 48th ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’17). (2017).

[136] Weintrop, D. and Wilensky, U. 2015. To block or not to block? That is the question.
Proceedings of the 14th International Conference on Interaction Design and Children.
(2015), 199–208.

[137] Wobbrock, J.O., Findlater, L., Gergle, D. and Higgins, J.J. 2011. The Aligned Rank
Transform for nonparametric factorial analyses using only ANOVA procedures.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2011),
143–146.

[138] Xie, B., Nelson, G.L. and Ko, A.J. 2018. An Explicit Strategy to Scaffold Novice Program
Tracing. Proceedings of the 49th ACM Technical Symposium on Computer Science
Education - SIGCSE ’18 (2018), 344–349.

[139] Blockly: A library for building visual programming editors: 2016.
https://developers.google.com/blockly/. Accessed: 2017-10-01.

[140] Google CS-First: Game Design: https://www.cs-first.com/course/game-design/video/241.
Accessed: 2016-01-01.

[141] The Eclipse Foundation: www.eclipse.org. Accessed: 2020-02-03.

[142] Brython: https://brython.info/. Accessed: 2020-02-03.

[143] Skulpt: http://www.skulpt.org/. Accessed: 2020-02-03.

[144] AP Computer Science Principles: 2016. https://secure-
media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-
and-exam-description.pdf. Accessed: 2017-10-01.

[145] IntelliJ IDEA: https://www.jetbrains.com/idea/. Accessed: 2020-02-03.

[146] Amphibian Plugin: 2019. https://github.com/cacticouncil/amphibian. Accessed: 2020-02-
03.

[147] JxBrowser: https://www.teamdev.com/jxbrowser. Accessed: 2020-02-03.

229

BIOGRAPHICAL SKETCH

Jeremiah Blanchard is an Assistant Engineer at the University of Florida in the Computer

& Information Science & Engineering Department, where he is a full-time faculty member.

Previously, he served as Program Director of Game Development at Full Sail University in

Winter Park, Florida (in the greater Orlando area), where he worked for 10 years and taught the

Artificial Intelligence for Games and Game Networking courses before moving into

administration. Before coming to Full Sail, he worked as a freelance game and application

developer and lived, worked, and studied in the Osaka region of Japan. His game development

experience includes work with the National Flight Academy in Pensacola, Florida, with whom

he worked to develop flight simulator scenarios to help teach at-risk middle and high school

students mathematics, physics, and history. He’s also worked with Design Interactive on

CogGauge, a game-based cognitive battery system developed on grant funding from NASA with

the intention of testing brain injuries in space.

He began his graduate work at the University of Florida in August 2005 and completed

his M.S. in Computer Engineering in May 2007. He worked full time at Full Sail University

from January 2007 to January 2017. From January 2017 until May 2017 he taught part-time at

the University of Florida, moving to a full-time position in May 2017. His passion for the

education and computer science fields drove him to return to complete his PhD in 2014 while

working.

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1 Research Motivation
	1.2 Research Opportunities
	1.3 Research Questions & Hypotheses
	1.4 Overview of Work

	BACKGROUND
	2.1 Learning to Program
	2.1.1 Language Challenges
	2.1.1.1 Syntax
	2.1.1.2 Semantics
	2.1.1.3 Perceptions

	2.1.2 Developing Expertise
	2.1.2.1 Sensorimotor
	2.1.2.2 Preoperational
	2.1.2.3 Concrete-operational
	2.1.2.4 Formal operational
	2.1.2.5 Summary

	2.2 Programming Assessment
	2.2.1 Concept Inventories
	2.2.2 Item Response Theory

	2.3 Visual Languages & Environments
	2.3.1 Development of Visual Programming Environments
	2.3.1.1 Early visual programming systems
	2.3.1.2 Blocks-based interface development

	2.3.2 Contemporary Blocks-Based Environments
	2.3.3 Efficacy of Blocks-Based Environments
	2.3.3.1 Effectiveness as learning environment
	2.3.3.2 Moving from blocks to text
	2.3.3.3 Special considerations - environments are not equal

	2.4 Multi-Modal Environments
	2.4.1 Hybrid Modality Environments
	2.4.2 Dual-Modality Programming Environments
	2.4.2.1 Unidirectional translation (blocks to text)
	2.4.2.2 Bidirectional translation

	STUDY OF PERCEPTIONS OF PROGRAMMING
	3.1 Study: Construct Perceptions in Children (Summer Camp)
	3.1.1 Study Context
	3.1.2 Procedure
	3.1.3 Qualitative Measures
	3.1.4 Coding Process
	3.1.5 Programming Definition Themes
	3.1.6 Findings – Perceptions of Programming
	3.1.7 Findings – Perceptions of Constructs
	3.1.8 Influence on Course of Research

	3.2 Position Paper: Bridging Blocks and Text

	STUDY OF DUAL-MODALITY PROGRAMMING ENVIRONMENTS
	4.1 Development: Python Variant of Pencil Code
	4.1.1 Description of Work
	4.1.2 Development
	4.1.2.1 Language interpreter runtime
	4.1.2.2 Python routines
	4.1.2.3 Palette (text-to-blocks mapping)

	4.1.3 Results

	4.2 Development: Custom Dual Modality Assessment (Python Text/Blocks)
	4.2.1 Description of Work
	4.2.2 Development
	4.2.3 Impact on Course of Research

	4.3 Study: Perceptions and Concept Assessment (Middle School)
	4.3.1 Study Context
	4.3.2 Participants
	4.3.3 Study Design
	4.3.4 Data Collection
	4.3.4.1 Surveys
	4.3.4.2 Assessments

	4.3.5 Data Analysis
	4.3.6 Findings
	4.3.7 Discussion

	FINAL STUDY: LEARNING & DUAL-MODALITY INSTRUCTION
	5.1 Research Questions & Hypotheses
	5.1.1 Performance Comparison in Dual-Modality vs Text Instruction
	5.1.2 Performance Comparison by Prior Experience
	5.1.3 Classroom Experience of Dual-Modality Instruction

	5.2 Amphibian: A Dual-Modality-Representation IDE Plugin for Java
	5.2.1 Using the Amphibian Plugin
	5.2.2 Architecture
	5.2.2.1 The Droplet Editor
	5.2.2.2 IntelliJ IDE Plugin Framework
	5.2.2.3 Logging mechanism

	5.3 Dual-Modality Curriculum
	5.3.1 Instruction
	5.3.2 Assignments
	5.3.3 Ethical Considerations
	5.3.3.1 Faculty review
	5.3.3.2 Delay of pure-text instruction
	5.3.3.3 Cognitive overload

	5.4 Instrument Evaluation Study
	5.4.1 Context & Data Collection
	5.4.2 Question Analysis

	5.5 Study: Dual-Modality Instruction, CS Learning, and Classroom Experience (CS1)
	5.5.1 Study Design
	5.5.2 Participants
	5.5.3 Data Collection
	5.5.3.1 Examinations, assessments, and demographic surveys
	5.5.3.2 Perception surveys and usage logs
	5.5.3.3 Bias control

	5.6 Analysis Methods: Dual-Modality Instruction and Learning
	5.6.1 Examinations and Assessments
	5.6.1.1 Hypotheses & expectations
	5.6.1.2 SCS1 assessment questions
	5.6.1.3 Course examination questions
	5.6.1.4 Analysis tests

	5.6.2 Surveys, logs, and notes
	5.6.2.1 Qualitative data
	5.6.2.2 Quantitative data
	5.6.2.3 Surveys
	5.6.2.4 Usage logs
	5.6.2.5 Instructor notes

	5.6. 3 Summary

	LEARNING & DUAL-MODALITY INSTRUCTION: FINDINGS & DISCUSSION
	6.1 Performance Comparison in Dual-Modality vs Text Instruction
	6.1.1 Course Exam Results
	6.1.1.1 Code reading & definitional questions
	6.1.1.2 Code writing questions

	6.1.2 SCS1 Results
	6.1.3 Performance Comparison Discussion
	6.1.3.1 Course Exam performance comparison discussion
	6.1.3.2 SCS1 performance comparison discussion

	6.1.4 Performance Comparison Summary

	6.2 Performance Comparison by Prior Experience
	6.2.1 Course Exam Results
	6.2.1.1 Code reading / definitional questions
	6.2.1.2 Code writing questions

	6.2.2 SCS1 Results
	6.2.3 Prior Experience Discussion
	6.2.3.1 Course exam discussion
	6.2.3.2 SCS1 discussion

	6.2.4 Performance Comparison by Prior Experience Summary

	6.3 Classroom Experience of Dual-Modality Instruction
	6.3.1 Student Perceptions of Dual-Modality Instruction
	6.3.1.1 Participants with only text experience
	6.3.1.2 Participants with only blocks or with both blocks and text experience
	6.3.1.3 Participants with no prior programming experience
	6.3.1.4 Perceptions of dual-modality instruction discussion

	6.3.2 Use of Dual-Modality Materials
	6.3.2.1 Dual-modality materials results
	6.3.2.2 Dual-modality materials discussion

	6.3.3 Instructor Experience

	6.4 Findings & Discussion Summary

	CONTRIBUTIONS
	7.1 Foundational Studies (Perceptions of Programming & Dual-Modality Representations)
	7.2 Technical: Python Pencil Code Variant & Amphibian Dual-Modality Java Plugin
	7.3 Empirical: Learning and Dual-Modality Approaches to CS Instruction
	7.4 Instructional: Perceptions in Dual-Modality Programming Environment

	CONCLUSIONS
	8.1 Problem
	8.2 Proposed Solution
	8.3 Early Work
	8.3.1 Perceptions of Programming Investigations
	8.3.2 Initial Evaluation of Perceptions & Learning

	8.4 Final Study
	8.4.1 Amphibian Dual-Modality Java Language IDE Plugin for IntelliJ IDEA
	8.4.2 Dual-Modality Instruction & Curriculum
	8.4.3 Instrument Evaluation
	8.4.4 Study of Dual-Modality Instruction and CS Learning
	8.4.5 Analysis of Learning and Dual-Modality Instruction
	8.4.6 Examination of Student Perceptions and Instructor Experience

	8.5 Contributions
	8.6 Future Work
	8.7 Summary

	CONFERENCES, PUBLICATIONS, & DEVELOPMENT
	Published / Completed
	In Progress

	TIMELINE FOR DOCTORAL WORK
	MIDDLE SCHOOL STUDY: DEMOGRAPHIC QUESTIONNAIRE
	MIDDLE SCHOOL STUDY: PERCEPTION QUESTIONNAIRES
	Personal Perceptions (Pre, Mid, & Post)
	Mid-Survey Only, By Condition
	Text Condition
	Blocks Condition
	Hybrid Condition
	Post-Survey Only, All Conditions

	CS1 STUDY: DEMOGRAPHIC QUESTIONNAIRE
	CS1 STUDY: PERCEPTION QUESTIONNAIRES
	Personal Perceptions (Pre-Survey Only)
	Blocks/Text Perceptions (Pre, Mid, Post)
	Hybrid Instruction Perceptions (Mid, Post)
	Weekly Survey

	CUSTOM ASSESSMENT
	ITEM ANALYSIS: CUSTOM ASSESSMENT IN CS1 COURSE
	ITEM ANALYSIS: SCS1 IN CS1 COURSE
	CONDITION AND EXPERIENCE INTERACTIONS
	PLUGIN EVENT COUNTS AND CATEGORY MAPPING
	CS1 STUDY CODEBOOK AND RESULTS TABLE BY MODULE NUMBER
	DISCUSSION WITH CURRICULUM COMMITTEE CHAIR
	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

