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ABSTRACT
Child characters are widely used in animations and games; however,
child motion capture databases are less easily available than those
involving adult actors. Previous studies have shown that there is
a perceivable difference in adult and child motion based on point
light displays, so it may not be appropriate to just use adult motion
data on child characters. Due to the costs associated with motion
capture of child actors, it would be beneficial if we could create
a child motion corpus by translating adult motion into child-like
motion. Previous works have proposed dynamic scaling laws to
transfer motion from one character to its scaled version. In this
paper, we conduct a perception study to understand if this proce-
dure can be applied to translate adult motion into child-like motion.
Viewers were shown three types of point light display videos: adult
motion, child motion, and dynamically scaled adult motion and
asked to identify if the translated motion belongs to a child or an
adult. We found that the use of dynamic scaling led to an increase
in the number of people identifying the motion as belonging to a
child compared to the original adult motion. Our findings suggest
that although the dynamic scaling method is not a final solution to
translate adult motion into child-like motion, it is nevertheless an
intermediate step in the right direction. To better illustrate the orig-
inal and dynamically scaled motions for the purposes of this paper,
we rendered the dynamically scaled motion on an androgynous
manikin character.

CCS CONCEPTS
• Computing methodologies→ Animation, Motion capture,
Perception;
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1 INTRODUCTION
Video games and electronic entertainment have become daily rou-
tine for many children. Children under age 11 spend over 1 hour
on TV/video and 0.54 hours on computer games per day [Chris-
takis et al. 2004]. Therefore, related industries have increasingly
targeted children to meet the expanding demand. Researchers have
also found that customizing characters to be similar to the user can
increase enjoyment of an experience during game play [Hwa Hsu
et al. 2005]. Companies such as Sony Computer Entertainment
and Telltale Games [Wikipedia 2017a,b] have developed adventure
games such "The Last of Us" and "TheWalking Dead" using children
as their main characters to attract young customers. To create those
characters and bring them to life, animators need to customize their
appearance, voice, motions and so on to match their identity as a
child. In this paper, we focus on tailoring the motion in a way that
looks like it was performed by a real child.

Motion capture (mocap) data is widely used to animate avatars.
Compared to animators creating the animation poses from scratch,
mocap data has the advantage of portraying realistic motions from
real actors [Menache 2000]. Across the existing mocap databases,
adult mocap data are more abundant and comprehensive compared
to child mocap data[Gross and Shi 2001]. This difference could be
because children may have a hard time following the instructions
and easily get distracted [Piaget 2015], therefore slowing down
the capture process, not to mention the additional cost and effort
associated with hiring minors.

Previous works have shown that people are able to identify
whether an abstract motion was performed by a child or an adult at
levels significantly above chance [Jain et al. 2016]. These findings
suggest that if adult mocap data is used to drive a child character,
the result would likely not be very compelling. We hypothesized
that if adult motion capture data could be stylized to have child-like
characteristics, then existing adult mocap databases could be used
to drive child characters in games and animations.

There is a large body of literature in motion stylization [Hsu
et al. 2005; Ikemoto et al. 2009; Min et al. 2010; Wang et al. 2007;
Xia et al. 2015]. However, these approaches either require long
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training sequences [Hsu et al. 2005] or a large amount of training
samples [Xia et al. 2015]. We note that previous work in biomechan-
ics, robotics, and computer graphics have successfully proposed
dynamic scaling laws to transfer motion from one character to
its scaled version [Hodgins and Pollard 1997; Raibert and Hodgins
1991]. These laws provide a set of scaling rules that scale the height
of the actor and the duration of the motion in a way that preserves
physics constants such as the value of gravity [Hodgins and Pollard
1997; Raibert and Hodgins 1991]. As a result, a stylization proce-
dure based on these rules should apply to a wide variety of motions,
without requiring the collection of exemplar motion sequences
from child actors. We created child-like motion from adult mocap
data by scaling the time and the displacement values using dynamic
scaling laws. We evaluate the e�ectiveness of this method via a
perception study. This evaluation is performed by rendering the
dynamically scaled motion as a point light display video, and com-
paring it to point light display videos of adult motion and child
motion. Naïve viewers were asked to identify if the motion was
belonging to a child or an adult. We hypothesized that adult motion,
when translated to child motion using dynamic scaling laws, would
be perceived as child motion. Our results showed that viewers are
more inclined to perceive the dynamically scaled adult motion as
child motion, though not to the same extent as the original child
motion. Our evaluation additionally replicated previous �ndings
by Jain et al. [2016] that viewers are able to distinguish adult mo-
tion from child motion at levels signi�cantly above chance. We
also show the dynamically scaled motion on an androgynous wood
manikin �gure.

The contributions of this paper are (a) the application of dynamic
scaling laws to create child-like motion from adult motion capture
data, and (b) a perception study using point light display videos of
child motion, adult motion, and dynamically scaled adult motion
that shows that viewers perceive dynamically scaled adult motion
as child motion signi�cantly more often than original adult motion,
but less so than original child motion.

2 RELATED WORK
We �rst review the prior work on perception studies in terms of
point light displays and rendered characters. We then focus on dif-
ferences in motion between children and adults. Finally, we discuss
di�erent motion translation techniques.

2.1 Perception studies
Researchers have found that people can infer information about
actors based on point light display representations (e.g., as shown
in Figure 1), which contain only dots representing each joint [Atkin-
son et al. 2004; Barclay et al. 1978; Jain et al. 2016; Johansson 1973].
Studies have shown that a point light display can convey informa-
tion regarding the motion type, the actor's identity, gender, and
even emotions. Barclay et al. [1978] found that the gender of actors
is identi�able from body movements using point light displays.
Their study also implied that presentation rate a�ects gender recog-
nition: non-normal speed will break physics laws in motions and
in return alter the perceived naturalness. A study conducted by
Atkinson et al. [2004] also showed that viewers can successfully
identify actors' emotions at levels greater than chance. They found

that participants were better able to identify the emotions when
presented with multiple frames of the actors' motion rather than a
single frame. Thus in our study, we chose to present the motions as
videos rather than static images to give more clues about the motion
to viewers. A perception study by Jain et al. [2016] also showed
that viewers are in general successful at distinguishing adult actors
from child actors when viewing point light display videos of their
motion. We use the publicly available data [Jain 2016] from this
study for our reference videos and mocap data for adult and child
motion; our study validates and extends their results.

Furthermore, previous work has shown that a character's appear-
ance has a signi�cant impact on people's perception [Chaminade
et al. 2007; Hodgins et al. 1998; Narang et al. 2017]. People have a
higher accuracy rate recognizing themselves from photo-realistic
characters than point light displays [Narang et al. 2017]. However,
the problem is that the rendered character can mislead viewers due
to its appearance. Chaminade et al. [2007] found that, when view-
ers saw motion on fully �eshed characters, they were more biased
toward believing the motion is biological rather than arti�cial. It
is not known if appearance of a child character alone would be
su�cient to make the motion seem �naturally� child-like, however.
In our case, we removed the appearance entirely by relying on the
point light display paradigm so that viewer judgments were made
only on motion characteristics. Our approach allows us to isolate
�child-like� motion to determine if adult motion can be translated
to child characters and still seem naturally child-like.

2.2 Motion di�erences in children and adults
Previous work has studied di�erences in the motion characteristics
of child motion and adult motion in di�erent contexts. Davis et
al. [2001] investigated the di�erences in walking motion between
children and adults by analyzing their gait features. They found
that children generally complete strides faster than adults. Their
study focused on younger children (ages 3 to 5). Our study focused
on children ages 5 to 9 because children in this age range undergo a
rapid improvement in motor performance as they develop [Thomas
1980]. Horita et al. [1991] compared the body con�gurations and
joint functions in 6-year-old and adult males for a standing jump
motion. By analyzing body segments and joint angles, they found
adult performance was much better than children with respect to
body motor control. Our study expands on these previous studies
by considering an age range from 5 to 9 years, and a wider range
of six di�erent actions.

2.3 Motion translation
In previous work, motion translation techniques have been used to
change a character's gait [Hsu et al. 2005], conveyed emotion [2015],
and body proportions [Gleicher 1998]. Hsu et al. [2005] found that
input motion can be transformed into a new style using linear
invariant models in real time. For example, a normal walk can
be translated into a crouched walk. Furthermore, with an online
learning algorithm, relationships between style and motion can
be established, which means unlabeled heterogeneous motion can
be identi�ed and then translated [Xia et al. 2015]. However, these
approaches either require long training sequences [Hsu et al. 2005]
or a large amount of training samples [Xia et al. 2015].
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Table 1: If the height of an actor is scaled by factor L, its
motion attributes will also be scaled according to the ta-
ble [Hodgins and Pollard 1997].

Quantity Units Geom. Scaling Mass Scaling

basic variables
length L L �
time T L1•2 �

Motion variables
displacement L L �

velocity LT� 1 L1•2 �
acceleration LT� 2 1 �

angular displacement � 1 �
angular velocity T � 1 L� 1•2 �

angular acceleration T � 2 L� 1 �

Raibert and Hodgins [1991] and Hodgins and Pollard [1997] ap-
plied dynamic scaling laws to computer generated motion of both
humans and animals to allow an animator to adapt these motions
to humans and animals of di�erent heights. The researchers also
pointed out that, if a motion control system is scaled in a certain
fashion, motion parameters will also be scaled accordingly. Hodgins
et al. [1997] used the scaling laws to modify the controller parame-
ters for a control system that generated adult human motion so that
it would generate motion for a child character. They also pointed
out that dynamic scaling laws can be applied to motion capture data
directly. Inspired by this work, we applied dynamic scaling laws to
motion capture data in our paper to create child-like motion from
adult motion capture data, with the goal of doing away with the
need for new motion capture sessions for child avatar animation.

2.4 Rendering characters
To see the e�ects of the scaling laws on the motion for the purposes
of this paper, after the perception study, we rendered the motion
onto an androgynous manikin character. Rendered characters con-
tain richer information about the motion than point-light displays,
and are often used in character animations. Hodgins et al.'s [1998]
study asserted that subjects are more sensitive to the changes in
running motion in a rendered geometric model compared to a stick
�gure model. Hence, we rendered our motion on a wooden �gure
model rather than a stick �gure in order to amplify and make more
visible the characteristics of the motions such as the speed. How-
ever, rendering realistic motion that matches motion capture data
accurately is challenging, especially for characters with di�erent
skeletons. Gleicher et al. [1998] created a space-time constraint
solver that adapts the motion while maintaining desirable features
of the original motion. We guarded against this problem by modi-
fying the skeleton and the skin mesh of the virtual characters to
match the actors. Feng et al. [2014] also proposed a pipeline to
tackle the challenges faced when preserving physical constraints
of the motion such as foot sliding and foot penetrating. We tackled
the foot sliding and foot penetrating problem by modifying the
position of the hip joint to ensure the foot always stays right on
the ground.

Figure 1: Examples of the test condition for a �Jumping
Jacks� motion shown to the participants. Left: Adult, Cen-
ter: Child, and Right: Dynamically Scaled Adult.

3 BACKGROUND: DYNAMIC SCALING LAWS
Previous work in biomechanics, robotics, and computer graphics
have successfully proposed dynamic scaling laws to transfer motion
from one biped character to its scaled version [Hodgins and Pollard
1997; Raibert and Hodgins 1991]. More speci�cally, when the body
of a human character is scaled by a certain factorL uniformly
across all dimension, its new motion can be found using dynamic
scaling laws (Table 1). The derivation of Table 1 is based on the
assumption that the acceleration of gravity for the two characters
is constant. According to Newton's law of motion,a = d•T2, the
accelerationa can be found from the displacementd an object
moves and the time it takesT. For ballistic motions such as jumping,
where the acceleration is the acceleration due to gravityg, if the
displacement is scaledL times, the time duration must be scaled
by sqrt¹Lº to maintain g. This change implies that the velocity
of the scaled motion can be derived asv = L•T =

p
L. Table 1

summarizes this conversation between the scaled motion and the
original motion. We assumed the dynamically scaled adult and
original adult are geometrically similar. In other words, the skeleton
of a dynamically scaled adult can be generated from scaling an adult
skeleton uniformly along all dimensions. In our case, because all
the actions were performed in place and they only required the
body to move up and down (alongy-axis), the lateral (alongz-axis)
and horizontal (alongx-axis) movement can be ignored. Except
the hip joint, the position of all other joints can be represented
as Euler angles (see Section 5) with respect to their parent joint.
According to dynamic scaling laws, the angular displacement stays
the same during the scaling procedure. Hence only the position of
the hip joint is a�ected. Therefore, we applied the scaling laws to
the following parameters:

(1) The displacement of the hip joint along they-axis.
(2) The time durationT to complete the action.

4 STIMULI PREPARATION
To prepare the stimuli (point light displays) used in our current
study, we used the motion capture data collected by Jain et al. [2016].
This dataset consists of movement data of four adult actors (ages
22 to 32, all male) and four child actors (ages 5 to 9, two female)
performing a set of six actions, tracked by the Microsoft Kinect.
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Figure 2: A MATLAB plot showing the frontal view of 20
joint positions of an adult actor, connected with lines.

The six actions are �Run as Fast as You Can� (�Run Fast�), �Walk
in Place� (�Walk�), �Jump as High as You Can� (�Jump High�), �Fly
Like a Bird�, �Wave Your Hand� (�Wave�), and �Do 5 Jumping Jacks�
(�Jumping Jacks�). For more information on the method used to
collect the data, see Jain et al. [2016]; the data is publicly available
[Jain 2016]. The actors began each action with a T-pose. To generate
our stimuli, we discarded the frames corresponding to the T-pose,
as well as the extra frames after the motion was completed. We
present the steps we used to apply dynamic scaling laws to the
adult motion.

(1) For each adult actor and action, we read in the csv �le that
contains the world coordinate 3D positions of20joints of the actor
performing the desired action (Figure 2). We denote the joint posi-
tions byx

w uj
i for the j th joint and thei th frame. The left superscript

x denotes that this is thex-coordinate, and the left subscriptw
denotes that the measurements are relative to the world coordinate
frame.

(2) The20joints can be represented as a tree structure as shown
in Figure 3, with the hip center as the root. We created a local
coordinate frame that is parallel to the world coordinate frame but
has its origin at the parent joint of a given jointj (see Figure 4). The
world coordinate 3D positionxw uj

i of a joint j was converted into

the local coordinate 3D positionxl uj
i by subtracting the position

of its parent joint. We started at each extremity and moved up the
tree structure shown in Figure 3.

(3) Figure 4 shows the local coordinate frame of a skeleton from
a single actor where the origin is in the parent joint and the axes
are parallel to the world coordinate. Because the hip joint does
not have a parent joint since it is the root joint, we kept its world
coordinates. Thex andz displacement of the hip were not scaled
because all of the actions were performed in place.

(4) We assume that a child skeleton can be generated by uni-
formly scaling the adult skeleton. That is, in this work, we do not
account for the fact that children have di�erently proportioned
limbs. The joint positions of the dynamically scaled body can be

found from equation (1). The scale factorL is the ratio of the average
height of a child for ages 5 to 9 years (recorded as1:22meters by
the World Health Organization's (WHO) Growth Reference [Onis
et al. 2007]), and the height of the input adult. The height of the
input adult is obtained by computing the distance between they

position of the headywuhip
1 and the ground which is computed as

they position of whichever the foot is lowerywulower f oot
1 in the

�rst frame. This distance is marked in Figure 2.

x
l u0j

i = L � x
l uj

i (1)

(5) Because we assumed that the scaled skeleton is geometrically
similar to the original skeleton, the relative joint position in local
coordinate space does not change. Only the displacement of the
hip center joint and the time duration were scaled. For each frame,
we computed the vertical displacement of the hip joint from its
position in the �rst frame, shown in equation (2).

�y
l uhip

i =y
l uhip

i � y
l uhip

1 (2)

The relevant dynamic scaling laws attributes we used in our
procedure are shown in Table 1. We multiplied the displacements
in they direction by the scaling factorL. Therefore, they position
of the dynamically scaled motion is computed as the sum of these
scaled displacements and they position in the �rst frame as shown
in equation (3).

y
l u0hip

i =y
l uhip

1 + L � �y
l uhip

i (3)

(6) Since the acceleration due to gravity is constant (in units of
m•s2), the duration of the motion must be scaled

p
L times if the

vertical displacement is scaledL times. This scaling process reduces
the number of frames, thus keeping the frame rate consistent across
the videos. The total number of frames for the dynamically scaled
motion was calculated according to equation (4).

T0 = round¹
p

L � Tº (4)

Figure 3: A plot demonstrating the tree structure of the ac-
tor's skeleton containing 20 joints.
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Figure 4: The local coordinate frame which has the origin of
each joint in its parent joint and axes parallel to the world
coordinate frame.

(7) For each framei 0in the dynamically scaled motion, we found
the corresponding framei in the original adult motion with the
mapping in equation (5).

i = 1+ ¹i 0 � 1º � T•T0 (5)

Each framei that corresponded to a non-integral frame number
was linearly interpolated betweenbic and die to calculate the joint
position, shown in equation (6).

y
l u0hip

i 0 = ¹die � i º � y
l uhip

bi c + ¹i � b icº � y
l uhip

di e (6)

(8) Joint positions in local coordinates were converted back to
world coordinates by traversing the tree from the root to the end
joint. The world coordinate of a joint is the sum of its parent coor-
dinate and the world coordinate of its parent joint.

(9) In order to minimize bias from the actor's size, we scaled the
stimuli to a canonical height using the method proposed by Jain et
al. [2016].

5 RENDERING THE MOTION ON A SKINNED
CHARACTER

In order to better evaluate our result, we rendered the mocap data
on realistic characters. The process included the following series of
steps.

(1) The noise in the motion capture data resulted in slight changes
in the length of the character's limbs. A one-dimensional median
�lter of window size 6 was applied on each degree of freedom to
smooth the motion. This window size corresponds to0:02seconds
because the motion was captured at30frames per second.

(2) Because the noise in the data resulted in a slightly di�erent
limb length in each frame, the frame-wise limb lengths were aver-
aged to obtain the limb length we used in all further computations.
We denote the limb length associated with jointj asr j . Because
the joint position has already been converted to local coordinates

Figure 5: The local coordinate frame where the y-axis of the
local coordinate frame aligns with the parent limb and the
x-axis aligns with the projection of the parent limb on x-z
plane in its local coordinate frame.

relative to the parent joint (see Section 3, point (2)), we can compute
the limb length as in equation (7).

r j =
1
T

TÕ

i =1

q
x
l uj

i
2 +y

l uj
i
2 +z

l uj
i
2 (7)

(3) Every joint was re-parametrized using three Euler angles us-
ing intrinsic rotations inx-z-y ordering¹Rx

l uj
i ;Ry

l uj
i ;Rz

l uj
i º relative

to a local coordinate frame where they-axis is parallel to the parent
limb (Figure 5). For the root, that is, the �Hip Center�, the local
coordinate frame is kept parallel to the world coordinate frame. For
all subsequent limbs, the local coordinate is aligned to the parent
limb. Figure 3 shows the �Hip Center�.

(4) We then rotated the joints¹xl uj
i ;yl uj

i ;zl uj
i º in the second level

of the tree hierarchy with respect to the parent joint coordinate.
All the angles were represented using the right handed coordinate
frame: they-axis of the parent joint coordinate is aligned with its
parent limb and thex-axis is aligned with the projection of the
parent limb on thex-z plane in its local coordinate.yl uj

i was set
to zero because we do not have enough information to compute
its value. We computed the joint angle iteratively using the same
process described above. Algorithm 1 demonstrates this process.

(5) After we modi�ed the limb length, we wrote a MATLAB
script to convert the mocap data from a csv �le to a bvh �le.

(6) After the limb length is modi�ed, the motion may violate
kinematics constraints from the environment. For example, the
changes in the leg limb length can cause the foot to detach from
the ground. To resolve this problem, we �rst annotated the frame
numberi where either one of the two feet is supposed to touch
the ground. Consider one of these frames, which we denote as
frame number i. The new position of the foot joint in framei in
the world coordinate after limb length is modi�ed is denoted as

¹xw uf oot
i ;yw uf oot

i ;zw uf oot
i º. We computed the vertical distance be-

tween ground position and the foot position as in equation (8).
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ALGORITHM 1: Joint Angle Computation

Input: Joint position in local coordinatexl uj
i ,yl uj

i ,zl uj
i

Output: Joint rotation in local coordinate¹Rx
l uj

i ;Ry
l uj

i ;Rz
l uj

i º

for each frame ido
for each branch in the tree structuredo

for each joint j from root to leafdo
Ry
l uj

i = 0

if joint=root nodethen
Rz
l uj

i = arctan¹zl uj
i ;yl uj

i º

Rx
l uj

= arctan¹yl uj
i ;

q
y
l uj

i
2 +z

l uj
i
2º

R = rotZ¹Rz
l uj

i ºº � rotX¹� Rx
l uj

i ºº

else
¹xp uj

i ;yp uj
i ;zp uj

i º = »¹xl uj
i ;yl uj

i ;zl uj
i º¼ �R

Rz
l uj = arctan¹zp uj

i ;yp uj
i º

Rx
l uj = arctan¹yp uj

i ;
q

y
p uj

i
2 +z

p uj
i
2º

R = R� rotZ¹Rz
l uj

i ºº � rotX¹� Rx
l uj

i ºº

end
end

end
end

disy =y
w uf oot

i � y
w ulower f oot

1 (8)

wherey
w ulower f oot

1 is they position of whichever foot was lower
in the �rst frame. To avoid the foot sliding issue, we computed
the horizontal and lateral displacement (see equation 9) of the foot
position within consecutive frames when they are supposed to
touch the ground. We assumed the foot touches the ground in both
framesi andi + 1.

disx =x
w uf oot

i +1 � x
w uf oot

i (9)

disz =z
w uf oot

i +1 � z
w uf oot

i (10)

Then we adjusted the position of the skeleton to place the foot
joint in place by subtracting the distance from the hip center, as
follows.

y
w uHipCenter

i =y
w uHipCenter

i � disy (11)

x
w uHipCenter

i =x
w uHipCenter

i � disx (12)

z
w uHipCenter

i =z
w uHipCenter

i � disz (13)

(7) We modi�ed the geometry and the skeleton to match our
actors, and exported the angle of each joint as an .animExport �le
in Maya. Then we imported the exported �le onto the skeleton of
the virtual character.

We used the rendered videos to interpret the results of our per-
ception study in closer detail. The rendered results helped us to
observe characteristics of the dynamically scaled motion such as
speed and coordination. The screenshots of the rendered action for
the �Jumping Jacks� action are shown in Figure 13.

6 EXPERIMENT DESIGN
We evaluated the e�ectiveness of the procedure in Section 4 in
transforming an input adult mocap sequence to appear more child-
like. This evaluation was performed by conducting a point light
display perception study. The data collection procedure was part of
a protocol approved by our Institutional Review Board (IRB). A total
of 24 participants (13 female, age range 21 to 29 years, mean=23.96,
standard deviation (SD)=2.9) who completed the survey either par-
ticipated for extra credit in a class or participated voluntarily.

To test our hypothesis (that adult motion dynamically scaled to
child motion could be recognized as child motion), we used a within-
subjects design. Every participant watched all three types of videos
(adult, child, and dynamically scaled adult) and all six actions (Run
Fast, Walk, Jump High, Fly like a Bird, Wave, and Jumping Jacks).
The experiment was an online survey. We had 72 videos in total (6
motions� 4 child actors + 6 motions� 4 adult actors + 6 motions�
4 adult actors, dynamically scaled). To account for possible fatigue
of the participants, we created 4 surveys. Each survey contained a
total of 54 stimuli videos (6 motions� 3 child actors + 6 motions� 3
adult actors + 6 motions� 3 adult actors, dynamically scaled). The
actors were counterbalanced across all the possible subsets of actors
within an actor type. The same adult and child actor were always
paired across di�erent surveys. To minimize ordering e�ects, the
videos were presented to the participants in random order.

Each video was followed by three questions. The �rst one was a
two-alternative forced choice question, �Does this motion belong
to a Child or an Adult?� The response was recorded via a radio
button that allowed only one option (Child or Adult) to be selected.
The second one was a 7-point unipolar Likert scale question for
the participants to indicate their own con�dence in their response.
Additionally, participants were asked to enter a free form text an-
swer to the question, �What is the action being performed?� This
question was to ascertain that they had in fact played the videos
and identi�ed the actions correctly. The videos were rendered at
30 fps. We used the child and adult point light display videos from
Jain et al. [2016] and supplemented them with dynamically scaled
adult point light display videos that we generated.

7 ANALYSIS AND RESULTS
We analyzed the survey responses to understand (a) how often
participants correctly identi�ed motion as belonging to a child or
an adult, (b) how often they attribute dynamically scaled adult
motion as belonging to a child, and (c) how attribution to child or
adult is a�ected by the action being performed.

7.1 Validation of previous work
Jain et al. [2016] reported the percentage correctness of their sur-
vey participants in identifying motions as belonging to a child or
an adult. We report our own data on this measure to compare to
theirs. In our survey, for each actor type/action pair they saw, each
participant answered the survey question, �Does the motion belong
to a child or an adult?� The number of child responses were tab-
ulated per actor type (child, adult, dynamically scaled adult) and
also per action type. We �rst computed the distribution of overall
correctness of adult videos and child videos across all the partici-
pants (Figure 6). Because there is no correct option for dynamically
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Figure 6: The distribution of overall correctness for each par-
ticipant. All participants except one have the overall correct-
ness above chance (50%), except one who is thus excluded
from remaining analysis.

scaled videos, we did not take this actor type into account when
calculating the overall percentage correctness. For each participant,
we computed the number of responses that match the actual actor
type across all 36 videos which include both adult videos and child
videos.We then divided the number of correct responses by 36 to get
the overall percentage of correctness. We removed one participant
whose overall percentage of correctness was below chance.

To analyze the data obtained, we used the statistical analysis
tool, R. First, we ran a Shapiro-Wilk test, which indicated that the
distributions of percentage correctness for child and adult videos
(Figure 7) were normal (p = 0:8151 > 0:05, p = 0:8455 > 0:05).
We ran a one-tailed t-test for adult videos and child videos, re-
spectively, to examine if the percentage of correctness is signifi-
cantly above chance. For adult videos, the percentage of correct-
ness (mean=68.36%, SD=12.47%) was significantly above chance (t
= 7.0592, df = 22, p < 0:0001). Similarly for the child videos, the
percentage of correctness (mean=66.91%, SD=14.06%) was signifi-
cantly above chance (t = 5.7664, df = 22, p < 0:0001). These results
confirmed the findings from Jain et al. [2016], that naïve viewers are
able to attribute motion rendered in point-light displays correctly
to children or adults at levels above chance.
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Figure 7: Histogram showing the distributions of the per-
centage of correctness for child videos and adult videos.

7.2 Results by actor type
To understand how well the dynamic scaling method works in
transforming adult motion into child-like motion, we examined
how often survey participants identified motion as belonging to a
child for each actor type they saw. To do so, we define the value
“child response” as the response to the question “Does this motion
belong to a child or an adult?”. Child response is set to 1 if the
response is ‘child’, and 0 otherwise. We define the number of child
responses per participant as the sum of child response for each
actor type, for each participant. We ran a Shapiro-Wilk test and
found that the distributions of the number of child responses for
all videos for each actor type (child, adult, and dynamically scaled
(DS)) were normal (p = 0:8151 > 0:05, p = 0:8455 > 0:05, and
p = 0:1609 > 0:05, respectively). We computed the means and
standard deviations for each actor type (Figure 8, 9a).

We ran a two-way repeated measures ANOVA on number of child
responses with within-subjects factors of actor type (Child, Adult,
DS), and action (“Fly Like a Bird”, “Jump High”, “Jumping Jacks”,
“Run Fast”, “Walk”, “Wave”) and found a significant main effect by
actor type (F2,384=57.57, p <0.0001). A Tukey post-hoc test showed
that the following pairs differ: Adult vs. Child (p <0.001), Child
vs. DS (p <0.001), and Adult vs. DS (p=0.019<0.05) (see Figure 10).
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Figure 8: Figure contains boxplot of the distribution of num-
ber of child responses. The bold bar in the middle shows the
median value.

(a)
Actor Type Mean SD

Child 12.04 2.53
Adult 5.70 2.24
DS 7.35 2.17

(b)
Action Mean SD

Fly like a bird 4.26 1.76
Jump high 4.57 1.56

Jumping jacks 3.22 1.54
Run fast 4.78 1.54
Walk 3.96 2.12
Wave 4.30 2.10

Figure 9: (a) Means and standard deviations of number
of child responses for each actor type. Every participant
watched 18 videos of each actor type. The maximal value of
number of child response is 18. (b) Means and standard de-
viations of number of child responses for each action. Every
participant watched 9 videos of each action. The maximal
value of number of child response is 9.
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The number of child responses for actor type Child (mean = 12.04,
SD = 2.53) is greater than that for actor type Adult (mean = 5.70,
SD = 2.24), which again shows that viewers are able to distinguish
child motion from adult motion. For the actor type Dynamically
Scaled, the number of child responses (mean = 7.35, SD = 2.17)
is greater than that of Adult (mean = 5.70, SD = 2.24), but less
than that of Child (mean = 12.04, SD = 2.53). This finding shows
that viewers were more likely to perceive the dynamically scaled
motion as belonging to a child than they were for the original adult
motion. At the same time, viewers did not perceive dynamically
scaled adult motion as belonging to a child as often as the original
child motion. This ordering indicates that, although the dynamic
scaling method is not a final solution to translate adult motion into
child-like motion, it is nevertheless a step in the right direction.

7.3 Results by action
We also examined how the identification of motion as belonging to
a child was affected by the action being performed. The same two-
way repeated measures ANOVA discussed in Section 7.2 showed a
significant main effect of action (F5,384=3.21, p=0.0075 <0.01).

Figure 11 shows the average number of child responses for all
six actions represented in our data set. A Tukey post-hoc test found
that the following action pairs differ: “Jumping Jacks” vs. “Run
Fast” (p = 0:004 < 0:01), and “Jumping Jacks” vs. “Jump High”
(p = 0:023 < 0:05). Considering the action “Jumping Jacks”, viewers
are more likely to identify the motion as belonging to an adult
regardless of actor type than for the action “Run Fast”. One possible
reason, based on the results of Jain et al. [2016], could be that
“Jumping Jacks” looked generally coordinated, and it is possible
that viewers associate better coordination with adult motion. For
the “Run Fast” action, both adult and child actors performed them
very fast. The overall number of child responses for this action was
dominated by responses for child actors (21.82% of child responses
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Figure 10: Bar chart showing the mean and standard error
of number of child responses for all three actor types. The
error bars represent the standard error. * indicates signifi-
cance at the p < 0:05 level, whereas *** indicates significance
at the p < 0:001 level.

belonged to adult actors, 50.91% of child responses belonged to
child actors, and 27.27% of child responses belonged to DS actors).
We think it is because generally children are less balanced than
adults [Schaefer et al. 2008], and the “Run Fast” action prompts the
actor’s motion to be fast, this child actors may be more likely to lose
balance when performing the action in place. The same trend can
be found in the action “Jump High”. Two of the four child actors did
more than one jump in their action, which could have increased the
number of child responses for those videos (e.g., for actor 290 who
did 4 jumps, the percentage of child responses is 73.91%; for actor
337 who did 3 jumps, the percentage of child responses is 60.87%;
for actor 723 who did 1 jump, the percentage of child responses
is 52.17%; for actor 644 who did 1 jump, the percentage of child
responses is 39.13%, ). A longer video helps viewers to infer more
information about the actor. However, if we cut off the videos after
one jump, we were concerned that the naturalness of the motion
will be compromised.

8 DISCUSSION AND FUTUREWORK
In this paper, we created child-like motion from adult mocap data
using dynamic scaling laws. We conducted a perception study to
evaluate the effectiveness of this method.

We found significant differences in the number of child responses
by actor type and action. Viewers were more likely to attribute the
dynamically scaled motion to a child than they were for the original
adult motion. Yet, the dynamic scaling method does not completely
convince the viewers that they are looking at child motion: viewers
did not perceive dynamically scaled adult motion as belonging to
a child as often as they did for the original child motion. In our
survey, participants gave a confidence score on a scale of 1 to 7 for
each of their responses to the videos. We analyzed these confidence
scores by actor type. A one-way repeated measures ANOVA on
confidence score with a within-subjects factor of actor type (Child,
Adult, Dynamically Scaled Adult) found no significant difference
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Figure 11: Bar chart showing themean and standard error of
child responses for all six actions. The error bars represent
the standard error. * indicates significance at the p < 0:05
level, whereas ** indicates significance at the p < 0:01 level.
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Figure 12: Bar chart showing the mean and standard error
of number of child responses per action for all three actor
types. The error bar represent standard error.

by actor type (F2,1217 = 0.52, n.s.). This finding shows that viewers
are equally confident about their choices for all actor types, thus
making our results comparable among the actor types. Thus, we
can conclude that the differences by actor type are reliable.

For action, viewers were generally more likely to attribute the
action “Jumping Jacks” to an adult and the action “Run Fast” and
“Jump High” to a child, regardless of the actual actor type of the
video. This finding indicates that the actions that are included in a
dataset may have an effect on viewers’ perception. An extreme ex-
ample of this effect might be the inclusion of the action “Crawling”:
viewers may be primed to perceive such an action as belonging to
a child no matter what the other motion characteristics are. Future
work could investigate more actions in a wider range of contexts.

We did not find an interaction effect between actor type and
action. However, Figure 12 illustrates some trends of interest. For
the “Jumping Jacks” action, viewers are generally more likely to
attribute dynamically scaled adult videos as being performed by
a child, and less likely to attribute the original adult videos as be-
ing performed by a child. However, for the “Walk” and “Wave”
actions, viewers are equally likely to attribute dynamically scaled
adult videos and the original adult videos as being performed by a
child. To better understand how the action being performed affects
viewers’ perception, we rendered the child, adult, and dynamically
scaled adult videos for all 6 actions on wooden androgynous figures
(Figure 13 and supplemental video). From watching the rendered
videos, we observed that for the action “Jumping Jacks”, it is evident
that the adult actors were more coordinated than the child actors,
but the adults moved slower than the children. For dynamically
scaled adults, we observed that the coordination level seemed sim-
ilar to that of adults, but the dynamically scaled wooden figures
moved as fast as child figures. However, we observed that for the
“Walk” and “Wave” actions, dynamically scaled adults moved simi-
larly to the original adults. Taken together, these insights imply that
viewers may perceive faster actions as belonging to children. In
order to adapt the motion to child characters, the dynamic scaling
procedure we used (Table 1) shortened the time duration of com-
pleting one action and in turn increased the speed. Therefore, the
dynamic scaling procedure seems to amplify a motion characteristic
that viewers use as a cue to distinguish child from adult motion. It

is worth noting that previous work in physiological gait analysis
supports the idea that children move faster than adults [Davis 2001].
Future work could extend this study by recruiting more actors to
investigate these trends.

It is worth noting that participants in our study may not have
interacted with children often enough to properly identify their
motion. Future work can consider recruiting participants who have
interacted more often with children such as parents and teachers.
Also, despite our decreasing the total number of videos that survey
participants saw from 72 to 54, some participants still complained of
fatigue. The survey system estimated 49 minutes as the total time to
complete the survey. This fatigue may have affected how accurate
responses were later in the survey. We controlled for this issue by
randomly ordering the videos that each participant saw. Another
limitation is that dynamic scaling laws only changed the displace-
ment and time duration of the motion. Because we are dealing with
motion capture data, the scaling in mechanical parameters such as
force, mass, or stiffness is not applied and hence, any such relevant
changes between child and adult motion are not captured. Also,
dynamic scaling laws are not sufficient to alter the coordination
and joint angle in the motion which could be an important cue
for viewers to tell apart children from adults. Because we assumed
that the skeleton of adult and child are geometrically similar, the
variations in limb ratio were not captured. Future work could in-
vestigate an algorithm to retarget the motion to child characters
that have different limb ratios and mass distributions, as well as
different coordination and motion control abilities. In conclusion,
this work takes an important first step in translating adult motion
into child-like motion, and can be of use in future work in games,
animation, and virtual reality.

9 CONCLUSION
In this paper, we considered the problem of generating motion for
child characters in games and animations by leveraging existing
databases of adult motion capture data. We showed that, by simply
changing the time and the displacement value of the motion using
dynamic scaling laws, we could create child-like motion from input
adult mocap data. We presented a discussion of the dynamic scaling
procedure, and algorithmic details for how to implement it. Finally,
we tested if naïve viewers perceive dynamically scaled adult motion
as child motion through a perception study. Our results showed
that, although viewers judged dynamically scaled adult motion as
belonging to a child significantly more often than the original adult
motion, they still attributed it to a child less often than the original
child motion. Because the dynamic scaling procedure is simple
to implement, does not require a training or exemplar database,
and achieves some success in convincing viewers, this method can
be used to create child motion from adult motion for a variety of
relevant applications, such as games, avatars in online education,
and virtual characters such as museum tour guides.
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